Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải
a) Tính diện tích hình thang BHDA
Do E là điểm chính giữa cạnh AB nên EA = AB/2 = 5cm.
Do H là điểm chính giữa cạnh BC nên BH = BC/2 = 5cm.
Do đó, đáy lớn của hình thang BHDA là BH + AD = 5 + 10 = 15cm.
Do hình thang BHDA là hình thang cân có đáy lớn bằng đáy bé nên diện tích của hình thang BHDA là:
S = 1/2 * (15 + 15) * 10 = 112.5cm^2b) Tính diện tích tam giác AHE và diện tích tam giác AHD
Do E là điểm chính giữa cạnh AB nên AE = AB/2 = 5cm.
Do H là điểm chính giữa cạnh BC nên BH = BC/2 = 5cm.
Do đó, diện tích tam giác AHE là:
S = 1/2 * AE * BH = 1/2 * 5 * 5 = 12.5cm^2Tương tự, diện tích tam giác AHD là 12.5cm^2.
Kết luận
- Diện tích hình thang BHDA = 112.5cm^2
- Diện tích tam giác AHE = Diện tích tam giác AHD = 12.5cm^2
Độ dài đoạn thẳng AE là :
10 : 2 = 5 (cm)
a) Diện tích hình thang BHDA là :
(10 + 5) x 10 : 2 = 75 (cm2)
b) Diện tích tam giác AHD:
10 x 10 : 2 = 50 (cm2)
Diện tích tam giác AHE:
5 x 5 : 2 =12.5 (cm2)
a) Vì H là trung điểm của BC nên BH==CH=1/2=12BC.
Độ dài đoạn thẳng BH và CH là:
10×1/2=5(cm)
Hình thang BHDA có đáy bé BH=5cm=5cm.
Diện tích hình thang BHDA là:
(10+5)×10:2=75(cm2)
Hình tam giác ABH có đáy BH=5cm
b) Diện tích hình tam giác ABH là:
10×5:2=25(cm2)
Ta có E là trung điểm của AB nên ta suy ra AE==BE=1/2=1/2AB.
Do AE=1/2=1/2AB với E nối liền với H và EH là một cạnh của hình tam giác AHE nên diện tích AHE=1/2=1/2 diện tích hình tam giác ABH.
Diện tích hình tam giác AHE là:
25×1/2=25/2(cm2)
Hình tam giác AHD có đáy AD=10cm
Diện tích hình tam giác AHD là:
10×10:2=50(cm2)
Đáp số: a)a) Diện tích hình thang BHDA bằng 75cm2
b)b) Diện tích hình tam giác AHE bằng 25/2cm2
Diện tích hình tam giác AHD bằng 50cm2
hok tốt
a)E và H là điểm chính giữa của AB,BC
=>AE=BE=CH=DH=10:2=5 cm
Diện tích hình thang BHDA là:
\(\frac{AB+BD}{2}.BD=\frac{10.5}{2}.10=75\left(cm^2\right)\)
Đáp số:75cm^2
mk làm 1 ý thôi nhá
\(a,\) Ta có \(BH=HC=AE=EB=\dfrac{1}{2}AB=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
\(S_{BHDA}=S_{ABCD}-S_{CHD}=AD^2-\dfrac{1}{2}CD\cdot CH\\ =100-\dfrac{1}{2}\cdot10\cdot5=75\left(cm^2\right)\)
\(b,S_{AHD}=S_{BHDA}-S_{AHB}=75-\dfrac{1}{2}\cdot10\cdot5=50\left(cm^2\right)\\ S_{AHE}=S_{AHB}-S_{HBE}=25-\dfrac{1}{2}\cdot5\cdot5=\dfrac{25}{2}\left(cm^2\right)\\ \Rightarrow S_{AHD}>S_{AHE}\)
a) Vì E là trung điểm của cạnh AB nên AE = EB = 10 : 2 = 5 (cm)
Diện tích hình tam giác ADE là:
5 x 5 : 2 = 12,5 (cm2)
b) Vì H là trung điểm của cạnh BC nên: BH = BC = 10 : 2 = 5 (cm)
Vì hình thang BHDA là hình thang vuông nên chiều cao của hình thang = cạnh hình vuông = 10 cm
Diện tích hình thang là:
(5 + 10) x 10 : 2 = 72 (cm2)
c) Diện tích hình tam giác là:
10 x 10 : 2 = 100 (cm2)
Đáp số: a) 12,5 cm2
b) 72 cm2
c) 100 cm2