Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: AM+MB=AB
BN+NC=BC
CP+PD=CD
QD+QA=AD
mà AB=BC=CD=AD và AM=BN=CP=QD
nên BM=CN=PD=QA
2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có
MA=NB
AQ=BM
Do đó: ΔMAQ=ΔNBM
=>MQ=MN(1)
Xét ΔMBN vuông tại B và ΔNCP vuông tại C có
MB=NC
BN=CP
Do đó: ΔMBN=ΔNCP
=>MN=NP(2)
Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có
NC=PD
CP=DQ
Do đó: ΔNCP=ΔPDQ
=>NP=PQ(3)
Từ (1),(2),(3) suy ra MQ=MN=NP=PQ
ΔMAQ=ΔNBM
=>\(\widehat{AMQ}=\widehat{BNM}\)
mà \(\widehat{BNM}+\widehat{BMN}=90^0\)(ΔBMN vuông tại B)
nên \(\widehat{AMQ}+\widehat{BMN}=90^0\)
\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)
=>\(90^0+\widehat{QMN}=180^0\)
=>\(\widehat{QMN}=90^0\)
Xét tứ giác MNPQ có
MN=NP=PQ=MQ
nên MNPQ là hình thoi
Hình thoi MNPQ có \(\widehat{QMN}=90^0\)
nên MNPQ là hình vuông
a:
ABCD là hình thoi
=>AC vuông góc BD tại trung điểm của mỗi đường
=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD
AM+MB=AB
PC+PD=DC
mà AM=PC và AB=DC
nên MB=PD
Xét tứ giác BMDP có
BM//DP
BM=DP
Do đó: BMDP là hình bình hành
b: Xét tứ giác AQCN có
AQ//CN
AQ=CN
Do đó: AQCN là hình bình hành
=>AC cắt QN tại trung điểm của mỗi đường
=>O là trung điểm của QN
=>N,O,Q thẳng hàng
c: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD
=>MQ vuông góc AC
Xét ΔABC có
BM/BA=BN/BC
nên MN//AC
=>MQ vuông góc MN
BMDP là hình bình hành
=>BD cắt MP tại trung điểm của mỗi đường
=>O là trung điểm của MP
Xét tứ giác MNPQ có
O là trung điểm chung của MP và NQ
góc NMQ=90 độ
Do đó: MNPQ là hình chữ nhật
a)
Vì BN = DQ , AD = BC => AD - DQ = BC - BN hay AQ = NC
Xét tam giác AQM và CNP có:
\(\hept{\begin{cases}AQ=CN\\AM=CP\\\widehat{QAM}=\widehat{NCP}\left(doABCDl\text{à}hbh\right)\end{cases}}\)
\(\Rightarrow\Delta AQM=\Delta CNP\left(c.g.c\right)\Rightarrow QM=NP\)
Hoàn toàn tương tự: △MBN=△PDQ(c.g.c)⇒MN=PQ
Tứ giác MNPQMNPQ có 2 cặp cạnh đối bằng nhau nên là hình bình hành.
=> MNPQ là hình bình hành.
b) Gọi K là giao điểm của AC và MP
Xét tam giác AKM và CKP ta có:
\(\hept{\begin{cases}\widehat{KAM}=\widehat{KCP}\left(slt\right)\\\widehat{KMA}=\widehat{KPC\left(slt\right)}\\\Rightarrow AM=CP\end{cases}}\)
\(\Rightarrow\Delta AKM=\Delta CKP\left(g.c.g\right)\)
\(\Rightarrow AK=CK;KM=KP\left(1\right)\)
Vì ABCDABCD là hình bình hành nên hai đường chéo AC,BDAC,BD cắt nhau tại trung điểm mỗi đường. Tương tự, MNPQMNPQ là hình bình hành nên MP,QNMP,QN cắt nhau tại trung điểm mỗi đường
Mà từ (1)(1) suy ra KK là trung điểm của AC,MPAC,MP, do đó KK cũng là trung điểm của BD,QNBD,QN
Do đó AC,BD,MP,NQAC,BD,MP,NQ đồng quy tại (trung điểm) KK.
S_EFGH = S_ABCD - S_BGF - S_GCH - S_AEHD
Là các hình tam giác vuông và hình thang vuông, dễ dàng tìm được hàm diện tích của EFGH theo x: -2x2 + 32.5x
Nếu được thì đạo hàm là tìm được giá trị x mà S max.
Đặt \(MN=a\)
= > Diện tích \(MNPQ=a^2\)
Gọi O là tâm hình vuông ABCD
= > O cũng là tâm hình vuông MNPQ
Ta có : \(MP=a\sqrt{2}\)
Ta có : \(MP\ge BC=4\left(cm\right)\)
\(\Rightarrow a\sqrt{2}\ge4\Leftrightarrow a\ge2\sqrt{2}\left(cm\right)\)
\(\Rightarrow S_{MNPQ}\ge\left(2\sqrt{2}\right)^2=8\left(cm^2\right)\)
\(\Rightarrow MinS_{MNPQ}=8\left(cm^2\right)\)
< = > MP // BC, MP đi qua O = > M là trung điểm của AB
Dó đó , N là trung điểm BC , P là trung điểm CD , Q là trung điểm DA