Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔANF có ME//NF
nên ME/NF=AM/AN
=>5/NF=1/2
=>NF=10(cm)
Xét ΔANF có
M là trung điểm của AB
ME//NF
Do đó: E là trung điểm của AF
Xét hình tahng BMEC có
N là trung điểm của MB
NF//ME//BC
Do đó: F là trung điểm của EC
Xét hình thang BMEC có
N là trung điểm của MB
F là trung điểm của EC
Do đó: NF là đường trung bình
=>ME+BC=2NF
=>BC=2NF-ME=20-5=15(cm)
Bạn dựa vào dtb của tam giác nha
Ta có ME//BC ; NF//BC
=>ME//NF
Xét tam giác ANF có
AM = MN
ME//NF (cmt)
=> AE = EF
Ta có tam giác ANF
AM = MN (gt)
AE = EF (cmt)
=> ME là dtb của tam giác ANF
=> ME = \(\dfrac{NF}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)
@Akai Haruma
Kẻ MP//MD (P \(\in\)AD) ta có:
\(\frac{AM}{AB}=\frac{AP}{AD}\)mà \(\frac{AM}{AB}=\frac{CN}{CD}\left(gt\right)\)nên \(\frac{AP}{AD}=\frac{CN}{CD}\)=> NP//AC
Gọi giao của MP và AC là K, của NP và BD là H
\(\frac{MK}{PK}=\frac{OB}{OD}\)và \(\frac{NH}{HP}=\frac{OC}{OA}\)mà \(\frac{OB}{OD}=\frac{OC}{OA}\)
=> \(\frac{MK}{KP}=\frac{NH}{HP}\)do đó KH//MN
Các tứ giác MKHF và EKHN là hình bình hành nên
MF=HK và EN=KH => MF=EN
Do đó: ME=NF (đpcm)
Ta có: MN // BC (gt), áp dụng hệ quả của định lý Ta – lét suy ra:
Suy ra: (Hệ quả định lí Ta-lét)