Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm M nằm giữa A và B nên: AB = AM + MB = 4 + 8 = 12cm
Áp dụng hệ quả định lí Ta let ta có;
Chọn đáp án C
a: Xét ΔABC có MN//BC
nên AM/MB=AN/NC
=>5/NC=3/2
=>NC=5:3/2=10/3cm
=>AC=5+10/3=25/3cm
Vì MN//BC
nên MN/BC=AM/AB
=>MN/8=3/5
=>MN=4,8cm
b: Xét ΔABC có MN//BC
nên MN/BC=AM/AB
=>6/BC=3/11
=>BC=22(cm)
c: Xét ΔABC có MN//BC
nên 5/BC=AM/AB=1/7
=>BC=35cm
Ta có: MN // BC (gt), áp dụng hệ quả của định lý Ta – lét suy ra:
Suy ra: (Hệ quả định lí Ta-lét)
a
Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)
\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)
Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)
Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)
b
Hạ \(NH\perp BC;MG\perp BC\)
Áp dụng định lý Pythagoras vào tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)
Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND
Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )
Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.
Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:(
MN//BC
=>MN/BC=AM/AB
=>MN/36=1/3
=>MN=12cm