K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn cập nhật lại hình ảnh vẽ nhé

2 tháng 3 2022

undefined

18 tháng 10 2018

Điểm M nằm giữa A và B nên: AB = AM + MB = 4 + 8 = 12cm

Áp dụng hệ quả định lí Ta let ta có;

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

28 tháng 9 2019

Chọn A

21 tháng 12 2022

a: Xét ΔABC có MN//BC

nên AM/MB=AN/NC

=>5/NC=3/2

=>NC=5:3/2=10/3cm

=>AC=5+10/3=25/3cm

Vì MN//BC

nên MN/BC=AM/AB

=>MN/8=3/5

=>MN=4,8cm

b: Xét ΔABC có MN//BC

nên MN/BC=AM/AB

=>6/BC=3/11

=>BC=22(cm)

c: Xét ΔABC có MN//BC

nên 5/BC=AM/AB=1/7

=>BC=35cm

17 tháng 3 2017

Ta có: MN // BC (gt), áp dụng hệ quả của định lý Ta – lét suy ra:

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

16 tháng 12 2019

d601BC7.png

a

Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)

\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)

Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)

Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)

b

Hạ \(NH\perp BC;MG\perp BC\)

Áp dụng định lý Pythagoras vào tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)

Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND

Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )

Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.

Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:(