K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

d601BC7.png

a

Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)

\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)

Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)

Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)

b

Hạ \(NH\perp BC;MG\perp BC\)

Áp dụng định lý Pythagoras vào tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)

Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND

Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )

Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.

Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:( 

12 tháng 3 2023

a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)

\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm

b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)

\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm

24 tháng 2 2021

Giúp mk vs

 

19 tháng 3 2018

M nằm giữa A và B nên: AB = AM + MB = 10cm

Theo định lí Ta let ta có:

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

8 tháng 3 2022

a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)

=> MN // BC (Ta lét đảo) 

b, Vì MN // BC 

Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)

7 tháng 4 2022

vẽ hình(tự vẽ)

a)  Xét △ABC có MN // BC(gt) ,theo định lí Ta-lét ta có:

     \(\dfrac{AM}{MB}\)=\(\dfrac{AN}{NC}\) hay \(\dfrac{6}{4}\)=\(\dfrac{8}{NC}\)⇒NC=\(\dfrac{8.4}{6}\)=5,3(cm)

Ta có: AB=AM+BM=6+4=10(cm)

          AC=AN+NC=8+5,3=13,3(cm)

Áp dụng định lý Py-ta-go vào △ABC vuông tại A ta có:

     BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt{10^2+13,3^2}\)=\(\sqrt{276,89}\)=16,6(cm)

Xét △ABC có MN // BC,theo hệ quả định lí Ta -lét ta có:

\(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)hay \(\dfrac{6}{10}\)=\(\dfrac{MN}{16,6}\)⇒MN=\(\dfrac{16,6.6}{10}\)=9,96(cm)

b)

7 tháng 4 2022

b)Xét tứ giác BMND có: BM//DN (AB//DN theo giả thiết)

                                       BD// MN(BC//MN theo giả thiết)

  ⇒ tứ giác BMND là hình bình hành

Diện tích hình bình hành BMND là:

  \(S_{BMND}\)=AN.BM=8.4=32(\(cm^2\))