K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

Lời giải:

a)

Vì $ABCD$ là hình thoi nên hai đường chéo $AC$ và $BD$ vuông góc với nhau

\(\Rightarrow \angle DOC=90^0\)

Ta có:

\(\left\{\begin{matrix} DE\parallel AC\\ AC\perp BD\end{matrix}\right.\Rightarrow DE\perp BD\Rightarrow \angle EDB=90^0\)

\(\left\{\begin{matrix} CE\parallel BD\\ BD\perp AC\end{matrix}\right.\Rightarrow CE\perp AC\Rightarrow \angle OCE=90^0\)

Xét tứ giác $ODEC$ có 3 góc đều là góc vuông nên là hình chữ nhật (đpcm)

b) Vì $ODEC$ là hình chữ nhật nên hai đường chéo $CD$ và $OE$ bằng nhau (\(OE=CD)\)

Mà $ABCD$ là hình thoi nên $BC=CD$

\(\Rightarrow OE=BC\) (đpcm)

2 tháng 12 2017

E cảm ơn cô nhiều ạ

28 tháng 9 2019

a) Ta chứng minh A N = C M A N ∥ C M ⇒ A M C N  là hình bình hành.

Vì O là giao điểm của AC và BD, ABCD là hình chữ nhật nên O là trung điểm AC

Do ANCM là hình bình hành có AC và MN là hai đường chéo

 

⇒  O là trung điểm MN

b. Ta có: EM//AC nên E M D ^ = A C D ^ (2 góc so le trong)

NF//AC nên B N F ^ = B A C ^  (2 góc so le trong)

Mà A C D ^ = B A C ^  (vì AB//DC, tính chất hình chữ nhật)

⇒ E M D ^ = B N F ^

Từ đó chứng minh được  ∆ E D M   =   ∆ F B N   ( g . c . g )

⇒ E M = F N

 

Lại có EM//FN (vì cùng song song với AC)

Nên tứ giác ENFM là hình bình hành

c) Tứ giác ANCM là hình thoi Û AC ^ MN tại O Þ M, N lần lượt là giao điểm của đường thẳng đi qua O, vuông góc AC và cắt CD, AB.

Khi đó M và N là trung điểm của CD và AB.

d) Ta chứng minh được DBOC cân tại O ⇒ O C B ^ = O B C ^   v à   N F B ^ = O C F ^  (đv) Þ DBFI cân tại I Þ IB = IF  (1)

Ta lại chứng minh được DNIB cân tại I Þ IN = IB  (2)

Từ (1) và (2) Þ I là trung điểm của NF.

27 tháng 12 2022

THAM KHẢO

a) BK//OC, CK//OB.

Mà OB ^OC Þ OBKC là hình chữ nhật.

b)ABCD là hình thoi nên AB = BC. OBKC là hình chữ nhật nên KO =BC.

Þ KO = BC Þ ĐPCM.

c) nếu OBKC là hình vuông thì OB = OC Þ BD = AC. Vậy ABCD là hình vuông

6 tháng 8 2019

tam giác OBE= tam giác ODN

a: Xét tứ giác ABCD có 

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

b: Vì ABCD là hình bình hành

nên AC và BD cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của BD

hay B và D đối xứng nhau qua O