Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABED có
\(\widehat{A}=\widehat{D}=\widehat{BED}\)
Do đó: ABED là hình chữ nhật
Bài 1:
Do E là hình chiếu của D trên AB:
=) DE\(\perp\)AB tại E
=) \(\widehat{DE\text{A}}\)=900
Do F là hình chiếu của D trên AC:
=) DF\(\perp\)AC
=) \(\widehat{DFA}\)=900
Xét tứ giác AEDF có :
\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)
=) Tứ giác AEDF là hình chữ nhật
Xét hình chữ nhật AEDF có :
AD là tia phân giác của \(\widehat{E\text{A}F}\)
=) AEDF là hình vuông
ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến ΔKDC vuông tại D
=> DB = BC = DC
=> tam giác DBC đều
Vậy góc KCD= 60độ
tổng 4 góc trong tứ giác ABCD = 360độ
=> góc ABC = 120độ
cách 2
Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*
Bài 3:
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
b: Xét tứ giác BEFC có
BE//CF
BE=CF
Do đó: BEFC là hình bình hành
mà BE=BC
nên BEFC là hình thoi
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó: ΔEDC vuông tại E
Xét tứ giác EMFN có
\(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)
Do đó: EMFN là hình chữ nhật
c: Để EMFN là hình chữ nhật thì EM=FN
=>ED=AF
=>AEFD là hình vuông
=>\(\widehat{BAD}=90^0\)
HÌnh bạn tự vẽ nha.
1/Theo định lí đường tb của hình thang thì:
CK=\(\frac{AB+EM}{2}=\frac{10+14}{2}=12\)
2/a/Ta có:TỨ giác AHMK có \(\hept{\begin{cases}gócA=90^o\\gócH=90^o\\gócK=90^o\end{cases}}\)
MÀ AHM+HMK+MKA+KAH=3600 \(\Rightarrow\) HMK=90o
\(\Rightarrow\)Tứ Giác AHMK là HÌnh Chữ Nhật
b/c/d/cm đó dễ mà bạn tự làm đi.
a: Xét tứ giác ABED có
góc BAD=góc ADE=góc BED=90 độ
nên ABED là hình chữ nhật
b: Xét tứ giác BMCD có
BM//CD
BM=CD
Do đo; BMCD là hình bình hành
c:
Gọi O là trung điểm của AE
góc AIE=90 độ
mà IO là trung tuyến
nên IO=AE/2=BD/2
Xét ΔIBD có
IO là trung tuyến
IO=BD/2
Do đó: ΔIBD vuông tại I