K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

Mấy bạn giải chi tiết dùm mình , mình cần gấp lắm ạk

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)

Bài 2: 

Ta có: ABCD là hình thang cân

nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)

hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)

16 tháng 9 2018

ABCDaaKH

a) Hình thang ABCD có :   \(\widehat{A}\) \(=\) \(\widehat{D}\) \(=\) \(90^0\)

Kẻ \(BH\perp CD\)

=> ABHD là hình chữ nhật   \((\widehat{A}=\widehat{D}=\widehat{H}=90^0)\)

Có  AB = AD = a 

=> ABHD là hình vuông .

=> AB = AD = BH = DH = a 

=> HC = DC - HD = 2a - a = a

\(\Delta BHC\) có   \(\widehat{A}=90^0\)

\(\Rightarrow\) \(tanC=\frac{BH}{HC}=\frac{a}{a}=1\)

b)  \(S_{ABCD}=\frac{\left(AB+CD\right)AD}{2}=\frac{3a^2}{2}\)

\(S_{DBC}=\frac{1}{2}BH.CD=\frac{1}{2}.a.2a=a^2\)

\(\frac{S_{DBC}}{S_{ABCD}}=\frac{a^2}{\frac{3a^2}{2}}=\frac{2}{3}\)

c) Kẻ  \(KC\perp AB\) 

=> AD = CK = a 

\(S_{ABC}=\frac{1}{2}CK.AB=\frac{1}{2}a.a=\frac{a^2}{2}\)

\(\frac{S_{ABC}}{S_{DBC}}=\frac{\frac{a^2}{2}}{a^2}=\frac{1}{2}\)

Tham khảo:

undefined

29 tháng 8 2019