K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Tham khảo cách chứng minh "Bổ đề hình thang":

http://vuontoanhoc.blogspot.com/2016/06/hinh-hoc-8-bo-e-hinh-thang.html

21 tháng 9 2017

Ta có hình vẽ:  A B C D K H O

Cách 1: Vì AB // CD

Và K và H lần lượt là trung điểm của các cạnh AB và CD. Vì trung điểm nằm giữa các đường thẳng

=> K và H thẳng hàng

Điểm O cũng thẳng hàng với K , H vì O là điểm cắt của hai dường chéo AC ; BD (như hình vẽ)

Vậy từ các lập luận trên ta đã có thể biết rằng ba điểm H, O , K thẳng hàng.

21 tháng 9 2017

Cách 2: Nhìn các nét đứt trong hình vẽ trên:

Ta nhận xét : Ba điểm H , O , K đều nằm trên nét đứt

\(\RightarrowĐPCM\)

a: Xét ΔOAB và ΔOCD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB\(\sim\)ΔOCD

b: Xét hình thang ABCD có HK//AB//CD

nên AH/AD=BK/BC(1)

Xét ΔADC có OH//DC

 nên OH/DC=AH/AD(2)

Xét ΔBDC có OK//DC

nên OK/DC=BK/BC(3)

Từ (1), (2) và (3) suy ra OH=OK

hay O là trung điểm của HK

12 tháng 5 2018

a;Vì AB//CD nên theo định lí Ta-lét ta có:

OA/OC=OB/ODOAOC=OBOD

⇒OA.OD=OC.OB⇒OA.OD=OC.OB

b;Xét ΔAOHΔAOH và ΔCOKΔCOKcó:

AHOˆ=CKO=90oˆAHO^=CKO=90o^

AOHˆ=COKˆAOH^=COK^ (hai góc đối đỉnh)

⇒ΔAOH ΔCOK(g.g)⇒ΔAOH ΔCOK(g.g)

⇒OAOC=OHOK(1)⇒OAOC=OHOK(1)

Vì AB//CD nên theo hệ quả của định lí Ta-lét ta có

ABCD=OAOC(2)ABCD=OAOC(2)

Từ 1 và 2 ta có:

OHOK=ABCD

12 tháng 5 2018

Cảm ơn bạn

Xét ΔODC có AB//DC

nên OA/AD=OB/BC

mà AD=BC

nên OA=OB

OA+AD=OD

OB+BC=OC

mà OA=OB và AD=BC

nên OD=OC

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

=>ΔADC=ΔBCD

=>góc EDC=góc ECD

=>ED=EC

OD=OC

ED=EC

=>OE là trung trực của CD

=>O,E,trung điểm của CD thẳng hàng

10 tháng 10 2021

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔABC

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có 

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: \(HE=\dfrac{BD}{2}\)

mà AC=BD

nên HE=EF

Xét tứ giác EFGH có 

EF//HG

EF=HG

Do đó: EFGH là hình bình hành

mà HE=EF

nên EFGH là hình thoi