K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

I A B D C M O

4 tháng 8 2017

Vì ABCD là hình thang cân nên \(\widehat{A1} = \widehat{B2}\), AC=BD.

Ta có : \(\widehat{A1}+\widehat{A2}=180 độ (kề bù) \widehat{B1}+\widehat{B2}=180 độ\)

\(\widehat{A_1}=\widehat{B_2} =>\widehat{A_2}=\widehat{B_1}\) => tam giác IAB cân tại I

Vì M là trung điểm của AM=MB=> IM là đường trung tuyến

Vì tam giác IAB cân nên IM đồng thời là đường đường trung trực, đường phân giác.

=>IM vuông góc AB(1)

Xét tam giác IOA và tam giác IOB:

IA=IB(tam giác IAB cân)

\(\widehat{I_1}=\widehat{I_2}\)(IM là phân giác)

IO chung

Do đó: tam giác IOA = tam giác IOB (cgc)

=> IA=IB(2 cạnh tương ứng)

OA=OB(2 cạnh tương ứng)

nên I,O thuộc đường trung trực của AB

=> IO vuông góc AB(2)

Từ (1) và (2) => I,O,M thẳng hàng (đccm)