K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

B C D A H K

24 tháng 3 2020

Ta có \(BD\ge AC\Rightarrow BK\ge AH\)

Dễ dàng CM: \(BK+AH\ge AB+CD\)(1)

\(2BK\ge BK+AH\left(2\right)\)

Từ (1) và (2) suy ra :

\(BK\ge\frac{AB+CD}{2}=\frac{S_{ABCD}}{DK}=\frac{1}{DK}\)

Vậy ta có: \(BD^2=BK^2+DK^2\ge DK^2+\frac{1}{DK^2}\ge2\Rightarrow BD\ge\sqrt{2}\)

a: Xét tứ giác ABDE có

AB//DE

AE//BD

=>ABDE là hbh

=>AB=DE=5cm và BD=AE=12cm

EC=5+15=20cm

EC^2=AE^2+AC^2

=>ΔAEC vuông tại A

b: Kẻ AH vuông góc EC tại H

=>AH=15*20/25=300/25=12cm

S ABCD=1/2*AH*(AB+CD)

=1/2*12*(5+15)=20*6=120cm2

25 tháng 1 2018

Gọi P là trung điểm của AD. Ta chứng minh được NP và MP lần lượt là đường trung bình của tam giác ABD và ADC nên suy ra NP//AB và MP//DC. Mặt khác AB//CD nên ta có P, N, M thẳng hàng MN//AB//DC

29 tháng 2 2020

A B C D M N E

Kẻ AN cắt CD tại E

Xét △ANB và △END có :

      ^ANB = ^END (đối đỉnh)

        NB = ND (gt)

      ^ABD = ^BDE (so le trong)

\(\Rightarrow\)△ANB = △END (g.c.g)

\(\Rightarrow\)AN = NE (cặp cạnh tương ứng)

Xét △AEC có : AM = MC

                         AN = NE

\(\Rightarrow\)MN // EC

\(\Rightarrow\)MN // AB // CD (ĐPCM)