Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chọn hệ trục tọa độ như sau: B 1 là gốc tọa độ, B 1 A 1 → = i → , B 1 C 1 → = j → , B 1 B → = k → . Trong hệ trục vừa chọn, ta có B 1 (0; 0; 0), B(0; 0; 1), A 1 (1; 0; 0), D 1 (1; 1; 0), C(0; 1; 1), D(1; 1; 1), C 1 (0; 1; 0).
Suy ra M(0; 0; 1/2), P(1; 1/2; 0), N(1/2; 1; 1)
Ta có MP → = (1; 1/2; −1/2); C 1 N → = (1/2; 0; 1)
Gọi ( α ) là mặt phẳng chứa C 1 N và song song với MP. ( α ) có vecto pháp tuyến là n → = (1/2; −5/4; −14) hay n ' → = (2; −5; −1)
Phương trình của ( α ) là 2x – 5(y – 1) – z = 0 hay 2x – 5y – z + 5 = 0
Ta có:
d(MP, C 1 N) = d(M,( α ))
Ta có:
Vậy ∠ (MP, C 1 N) = 90 ° .
Chọn D.
Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN). Do đó:
d(MN;BD) = d(BD;(MPN)) = d(B;(MPN))
Nhận thấy nên tam giác MPN vuông tại M.
Do đó
Ta có
Cách 2:
Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN).
Đồng thời, MP//CB', PN//B'D' => (MPN)//(CB'D')
Do đó
(vì PC’ cắt B’C tại trọng tâm tam giác BB’C’).
Nhận thấy tứ diện C'.CB'D' là tứ diện vuông tại C' nên
Vậy
Cách 3: Tọa độ hóa
Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó,
Chọn đáp án C.
Gọi P là trung điểm cạnh A'D' khi đó BD//NP.
Khi đó góc giữa
Vì ABCD.A'B'C'D' là hình lập phương cạnh a nên
Suy ra
Do đó tam giác MNP đều