Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Gọi P là trung điểm cạnh A'D' khi đó BD//NP.
Khi đó góc giữa
Vì ABCD.A'B'C'D' là hình lập phương cạnh a nên
Suy ra
Do đó tam giác MNP đều
Chọn B
Gọi M là trung điểm BB'. Ta có: CK // A'M => CK // (A'MD)
Khi đó d(CK, A'D) = d (CK, (A'MD)). Gắn hệ trục tọa độ như hình vẽ:
Ta có: A(0;0;0), B(a;0;0), D(0;a;0), A'(0;0;a), B'(a;0;a), C(a;a;0), M(a;0;a/2).
Vậy mặt phẳng (A'MD) nhận làm vectơ pháp tuyến.
Phương trình (A'MD) là x + 2y + 2z - 2a = 0
Do đó:
Chọn D.
Cách 1: Trong mặt phẳng (CDD'C) gọi P là giao điểm của CK và C'D'.
Suy ra KD' là đường trung bình của ∆ PCC' => D' là trung điểm của PC'.
Trong mặt phẳng (A'B'C'D') gọi M là giao điểm của PB' và A'D'
Ta có
Tứ diện PCC'B' có C'P, C'B và C'B đôi một vuông góc với nhau.
Đặt thì
Suy ra
Vậy
Cách 2: (Đã học chương 3, HH12)
Chọn hệ trục tọa độ sao cho: D(0;0;0), trục Ox trùng với cạnh DC, trục Oy trùng với cạnh DA, trục Oz trùng với cạnh DD', chọn a = 1.
Ta có :
Gọi I là trung điểm OA. Vì IM// SO ⇒ IM⊥(ABCD) nên hình chiếu của MN lên (ABCD) là IN. Suy ra
Áp dụng định lí cô sin trong ΔCIN, ta có:
Ta có d(BC, DM) = d(BC, (SAD)) = d(N, (SAD)) = 2d(O, (SAD)) = 2d(O, (SBC)).
Kẻ OE ⊥ SN ⇒ OE ⊥ (SBC).
Ta có d(O, (SBC)) = OE mà
Gọi P là trung điểm của SA. Ta có MNCP là hình bình hành nên MN song song với mặt phẳng (SAC). Mặt khác, BD vuông góc với mặt phẳng (SAC) nên BD vuông góc với MN.
Vì MN song song với mặt phẳng (SAC) nên
\(d\left(MN,AC\right)=d\left(N,SAC\right)\)
\(=\frac{1}{2}d\left(B;\left(SAC\right)\right)=\frac{1}{4}BD=\frac{a\sqrt{2}}{4}\)
Vậy \(d\left(MN;AC\right)=\frac{a\sqrt{2}}{4}\)
Chọn D.
Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN). Do đó:
d(MN;BD) = d(BD;(MPN)) = d(B;(MPN))
Nhận thấy nên tam giác MPN vuông tại M.
Do đó
Ta có
Cách 2:
Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN).
Đồng thời, MP//CB', PN//B'D' => (MPN)//(CB'D')
Do đó
(vì PC’ cắt B’C tại trọng tâm tam giác BB’C’).
Nhận thấy tứ diện C'.CB'D' là tứ diện vuông tại C' nên
Vậy
Cách 3: Tọa độ hóa
Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó,