K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1

Hic, nghĩ mãi ko thể sử dụng cách dựng hình thông thường được. Phải quay về cách sử dụng vecto mặc dù ghét cách này vì phải tính nhiều (nhưng mà nó dễ :D)

Đặt \(\overrightarrow{BA}=a;\overrightarrow{BC}=\overrightarrow{b};\overrightarrow{BB'}=\overrightarrow{c}\) 

Giả sử \(\overrightarrow{AM}=x.\overrightarrow{AC}\) ; \(\overrightarrow{BN}=y.\overrightarrow{BD'}\)

Ta có: \(\overrightarrow{DI}=\overrightarrow{DA}+\overrightarrow{AI}=-\overrightarrow{b}+\dfrac{1}{2}\overrightarrow{c}\)

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}=-x.\overrightarrow{AC}+\overrightarrow{AB}+y.\overrightarrow{BD'}=-x.\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{AB}+y.\left(\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}\right)\)

\(=\left(x+y-1\right)\overrightarrow{BA}+\left(y-x\right)\overrightarrow{BC}+y.\overrightarrow{BB'}=\left(x+y-1\right)\overrightarrow{a}+\left(y-x\right)\overrightarrow{b}+y.\overrightarrow{c}\)

MN và DI song song khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y-1=0\\\dfrac{y-x}{-1}=\dfrac{y}{\dfrac{1}{2}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x=3y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy M thuộc đoạn AC sao cho \(AM=\dfrac{3}{4}AC\) \(\Rightarrow\dfrac{AM}{MC}=3\)

N thuộc đoạn BD' sao cho \(BN=\dfrac{1}{4}BD'\)

NV
12 tháng 1

Phí mất 15ph kẻ kẻ vẽ vẽ dựng dựng, quay qua tính tay bằng vecto mất 30s =))))

23 tháng 12 2017

Làm thì làm đc nhưng vẽ hình trên máy tính mệt lắm :)

NV
4 tháng 3 2022

\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\Rightarrow\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a}\)

Theo Talet: \(\dfrac{A'K}{IK}=\dfrac{B'I}{A'D'}=\dfrac{1}{2}\Rightarrow A'K=\dfrac{2}{3}A'I\)

\(\Rightarrow\overrightarrow{A'K}=\dfrac{2}{3}\overrightarrow{A'I}=\dfrac{2}{3}\left(\overrightarrow{A'B'}+\overrightarrow{B'I}\right)=\dfrac{2}{3}\left(\overrightarrow{A'B'}+\dfrac{1}{2}\overrightarrow{B'C'}\right)\)

\(=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{a}+\dfrac{1}{3}\left(\overrightarrow{b}-\overrightarrow{a}\right)=\dfrac{1}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}\)

\(\Rightarrow\overrightarrow{DK}=\overrightarrow{DD'}+\overrightarrow{D'A'}+\overrightarrow{A'K}=\overrightarrow{AA'}-\overrightarrow{BC}+\overrightarrow{A'K}\)

\(=\overrightarrow{c}-\left(\overrightarrow{b}-\overrightarrow{a}\right)+\dfrac{1}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}\)

\(=\dfrac{4}{3}\overrightarrow{a}-\dfrac{2}{3}\overrightarrow{b}+\overrightarrow{c}\)

NV
3 tháng 10 2020

Hướng dẫn:

Gọi P, H lần lượt là trung điểm CD, B'C' \(\Rightarrow\) PMHN là hình chữ nhật

Gọi K, G lần lượt là giao điểm của AC và PM, A'C' là HN \(\Rightarrow\) K, G lần lượt là trung điểm PM và NH

Điểm E chính là giao điểm của MN và KG.

Với việc K, G là trung điểm 2 cạnh đối hcn và MN là đường chéo của hcn thì hiển nhiên E sẽ là trung điểm MN

b.

Do E là trung điểm PG (và MN) nên QE song song AC

Do đó QE, AC', BD' cùng đi qua tâm I của lập phương

c.

Như câu b thì I đồng thời là tâm lập phương

QI đi qua trung điểm E của MN đồng thời \(\frac{QI}{QE}=\frac{AO}{AK}=\frac{2}{3}\) (với O là tâm hình vuông ABCD) nên I là trọng tâm QMN

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a. 1) CMR: DCB'A' và BCD'A' là những hình vuông. 2) CMR: AC' vuông góc với DA'; AC' vuông góc với BA' 3) Tính độ dài đoạn AC' Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC' và B'C sao cho...
Đọc tiếp

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a.

1) CMR: DCB'A' và BCD'A' là những hình vuông.

2) CMR: AC' vuông góc với DA'; AC' vuông góc với BA'

3) Tính độ dài đoạn AC'

Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC' và B'C sao cho \(\overrightarrow{MA}=k\overrightarrow{MC'}\) , \(\overrightarrow{NB'}=k\overrightarrow{NC}\) . Biểu diễn các vectơ sau theo ba vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) (nhớ vẽ hình)

Bài 3: Cho tứ diện ABCD có tất cả các cạnh bằng a. Các điểm M, N lần lượt là trung điểm AB, CD. O là tâm đường tròn ngoại tiếp tam giác BCD.

1) CMR: AO vuông góc với CD; MN vuông góc với CD.

2) Tính góc giữa: AC và BN; MN và BC. (nhớ vẽ hình.)

0
23 tháng 1 2022

lỗi hình mất r 

23 tháng 1 2022

lỗi hình

NV
4 tháng 4 2021

ABB'A' và CDD'C' là hình vuông \(\Rightarrow CD'\perp DC'\Rightarrow CD'\perp\left(ADC'B'\right)\)

Gọi M là giao điểm CD' và DC' \(\Rightarrow\) M là trung điểm 2 đoạn nói trên

Trong mp (ADC'B'), từ M kẻ \(MH\perp AC'\Rightarrow MH\) là đường vuông góc chung của AC' và CD'

\(DC'=AB'=\sqrt{AB^2+A'A^2}=a\sqrt{2}\)

\(\Rightarrow AD=B'C'=\sqrt{AC'^2-AB'^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ADC'\) vuông cân tại D \(\Rightarrow\Delta MHC'\) vuông cân tại H

\(\Rightarrow MH=\dfrac{MC'}{\sqrt{2}}=\dfrac{DC'}{2\sqrt{2}}=\dfrac{a}{2}\)