K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔNMH vuông tại H và ΔNQM vuông tại M có

góc MNH chung

=>ΔNMH đồng dạng với ΔNQM

b: ΔNMH đồng dạng với ΔNQM

=>NH/NM=NM/NQ

=>NM^2=NH*NQ=PQ^2

c: Gọi A là trung điểm của HM

Xét ΔHMN có HK/HN=HA/HM=1/2
nên AK//MN và AK=1/2MN

=>AK//QI và AK=QI

=>AKIQ là hình bình hành

=>KA//QI

=>KA vuông góc MQ

Xét ΔMQK có

KA,MH là đường cao

KA cắt MH tại A

=>A là trực tâm

=>QA vuông góc MK

=>KI vuông góc KM

=>góc MKI=90 độ

a: Xét tứ giác MNIH có

MH//NI

MN//IH

góc MHI=90 độ

Do đó: MNIH là hình chữ nhật

b: Xét ΔMHQ vuông tại H và ΔNIP vuông tại I có

MQ=NP

góc Q=góc P

Do đó: ΔMHQ=ΔNIP

=>QH=IP

c: Xét ΔMKQ có

MH vừa là đường cao, vừa là trung tuyến

nên ΔMKQ cân tại M

=>góc MQK=góc MKQ=góc P

=>MK//NP

mà MN//KP

nên MNPK là hình bình hành

=>MP cắt NK tại trung điểm của mỗi đường

=>M,E,P thẳng hàng

a: Xet tứ giác MPNQ có

I là trung điểm chung của MN và PQ

nên MPNQ là hình bình hành

b:M đối xứng K qua PQ

nên MK vuông góc với PQ tại trung điểm của MK

=>H là trung điểm của MK

Xét ΔMKN có MH/MK=MI/MN

nên HI//KN

=>KN vuông góc với KM

c: M đối xứng K qua PQ

nên QM=QK

=>QK=PN

Xét tứ giác PQNK có

PQ//NK

PN=QK

Do đó: PQNK là hình thang cân

2 tháng 1 2019

a) Hai tam giác vuông AHD và BDC có ∠ADH = ∠CBD (SLT)

⇒ ΔAHD ∼ ΔDCB (g.g)

b) Ta có S, R là trung điểm của HB và AH nên SR là đường trung bình của ΔABH ⇒ SR // AB

⇒ ∠HSR = ∠HBA (đồng vị)

Mà ∠HBA = ∠D1

⇒ HSR = ∠D1

Do đó ΔSHR ∼ ΔDCB (g.g)

c) Ta có SR // AB và SR = AB/2 (cmt), TD = CD/2

mà AB = CD và AB // CD (gt)

⇒ SR // DT và SR = DT

Do đó Tứ giác DRST là hình bình hành

d) Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o