K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2022

a: Xét ΔHAB có HI/HA=HK/HB

nên IK//AB và IK=AB/2

b: Xét tứ giác DIKF có

IK//DF

IK=DF

Do đó: DIKF là hình bình hành

c: Xét ΔAKD có

AH,KI là các đường cao

AH cắt KI tại I

Do đó: I là trực tâm

=>DI vuông góc với AK

=>KF vuông góc với KA

=>góc AKF=90 độ

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

12 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Suy ra:AN//CM

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//PC và MN=PC

=>NCPM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MP

hay góc BMP=90 độ

1 tháng 9 2019

tự vẽ hình nhé . 

a) tứ giác ANMD có :

 AN = 1/2 AB ; DM = 1/2 CD 

\(\Rightarrow\)AN = DM (AB = CD )

mà AB // CD \(\Rightarrow\)AN // DM 

\(\Rightarrow\)ANMD là hbh . 

mà AN = AD ( = 1/2 AB )  \(\Rightarrow\)ANMD là hình thoi . 

b) \(\Delta\)vuông AHB có : 

HN là trung tuyến của AB . \(\Rightarrow\)HN = 1/2 AB 

và MN = 1/2 AB ( MN = AN ) 

\(\Rightarrow\)\(\Delta\)HNM cân tại N .

1 tháng 9 2019

thấy xinh thì  

b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)

mà \(AB=BC=\dfrac{AD}{2}\)

nên AE=ED=AB=BC

Xét tứ giác AECB có 

AE//CB

AE=CB

Do đó: AECB là hình bình hành

mà \(\widehat{EAB}=90^0\)

nên AECB là hình chữ nhật

mà AE=AB

nên AECB là hình vuông

Xét ΔHAD có 

N là trung điểm của AH

M là trung điểm của HD

Do đó: MN là đường trung bình của ΔHAD

Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)

mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC

nên MN//BC và MN=BC

Xét tứ giác BCMN có 

MN//BC

MN=BC

Do đó: BCMN là hình bình hành