K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D M

Bài làm

Ta có: MA = MD ( hai tia đối nhau )

          MC =  MB ( hai tia đối nhau )

=> MA + MC = MD + MB

=> MA2+MC2=MD2+MB2 ( đpcm )

Vậy MA2+MC2=MD2+MB2

# Chúc bạn học tốt #

15 tháng 10 2015

xem hinh tai detail.6940072.html

Gọi K là giao điểm 2 đường chéo AC và BD => K là trung điểm AC và BD (tính chất HCN)  

Trong tam giác MAC: MA^2 + MC^2 = 2*MK^2 + (1/2)*AC^2 (1) (công thức trung tuyến)  

Trong tam giác MBD: MB^2 + MD^2 = 2MK^2 + (1/2)*BD^2 (2) (công thức trung tuyến)  

Mặt khác AC = BD (đường chéo HCN) (3)  

Từ (1), (2), (3) => MA^2 + MC^2 = MB^2 + MD^2 (đpcm)

14 tháng 1 2018

M A B C D

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Đại số lớp 7

Qua M kẻ \(FG\perp AB,CD\) như hình vẽ

Ta thấy $AFGD$ và $BFGC$ có các góc đều là góc vuông nên chúng là hình chữ nhật. Do đó \(AF=DG; BF=CG\)

Áp dụng định lý Pitago cho các tam giác vuông ta có:

\(\left\{\begin{matrix} MA^2=MF^2+FA^2\\ MB^2=MF^2+FB^2\\ MC^2=MG^2+GC^2\\ MD^2=MG^2+GD^2\end{matrix}\right.\)

\(\Rightarrow MA^2+MC^2-(MB^2+MD^2)=FA^2+GC^2-(FB^2+GD^2)\)

Do \(AF=DG; BF=CG\Rightarrow AF^2=DG^2; BF^2=GC^2\)

\(\Rightarrow FA^2+GC^2-(FB^2+GD^2)=0\)

\(\Leftrightarrow MA^2+MC^2-(MB^2+MD^2)=0\)

\(\Leftrightarrow MA^2+MC^2=MB^2+MD^2\)

Ta có đpcm

26 tháng 11 2017

Mình trả lời luôn câu b hi

undefined

Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD

=>MQ là đường trung bình

=>MQ//BD và MQ=BD/2

Xét ΔCBDcó

N,P lần lượt là trung điểm của CB,CD

=>NP là đường trung bình

=>NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

Xét  ΔBAC có M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình

=>MN=AC/2=BD/2=MQ

Xét tứ giác MNPQ có

MQ//NP

MQ=NP

=>MNPQ là hình bình hành

mà MN=MQ

nên MNPQ là hình thoi

16 tháng 6 2019

Giả sử dùng các hình chữ nhật 1x4 để phủ các ô vuông của bảng 14x14 mà không bị chồng chất lên nhau và không có phần nào bị thừa

thì cần số hình chữ nhật 1x4 là : 14x14 : 1x4 = 49 ( hình )

Ta dùng 36 hình chữ nhật 1x4 để sắp xếp thành bảng lớn khác 12x12, hình vẽ :

Như vậy để có bảng 14x14 ta phải lắp thêm 13 hình chữ nhật 1x4 nữa 

Ta thấy không thể lắp vừa => Không thể dùng các hình chữ nhật 1x4 để phủ các ô vuông của bảng 14x14 mà không bị chồng chất lên nhau và không có phần nào bị thừa.