Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHD vuông tại H và ΔDCB vuông tại C có
góc ADH=góc DBC
=>ΔAHD đồng dạng vơi ΔDCB
c: Xét ΔHAB có HN/HA=HM/HB
nên MN//AB
=>MN vuông góc AD
mà AH vuông góc DM
và AH cắt MN tại N
nên N là trực tâm
=>ND vuông góc AM
=>ME vuông góc AM
a) Hai tam giác vuông AHD và BDC có ∠ADH = ∠CBD (SLT)
⇒ ΔAHD ∼ ΔDCB (g.g)
b) Ta có S, R là trung điểm của HB và AH nên SR là đường trung bình của ΔABH ⇒ SR // AB
⇒ ∠HSR = ∠HBA (đồng vị)
Mà ∠HBA = ∠D1
⇒ HSR = ∠D1
Do đó ΔSHR ∼ ΔDCB (g.g)
c) Ta có SR // AB và SR = AB/2 (cmt), TD = CD/2
mà AB = CD và AB // CD (gt)
⇒ SR // DT và SR = DT
Do đó Tứ giác DRST là hình bình hành
d) Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)
⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA
Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA
Vậy ∠AST = 90o
a, xét tam giác ADH và tam giác DBC có:
góc AHD=góc BCD=90 độ
góc ADH= góc DBC (so le trong)
=> tam giác ADH~tam giác DBC
=> AD/DB=DH/BC
mà AD=BC (ABCD là hcn)
=> BC/DB=DH/BC
=> BC.BC=DH.DB
hay \(BC^2\)= DH.DB
b, xét tam giác HAB có:
AN=HN (N là trung điểm của AH)
HM=BM (M là trung đểm của HB)
=> MN là đg tb của tam giác HAB
=> MN//AB
=> tam giác HMN~ tam giác HBA
c, xét tam giác HBA và tam giác CDB có:
góc AHB=góc BCD=90 độ
góc ABH=góc BDC (so le trong)
=> tam giác HBA~tam giác CDB
mà tam giác HBA~tam giác HMN (theo b)
=> tam giác HMN~tam giác CDB
=> HM/CD=MN/BD
=> HM.BD=MN.CD
mình biết làm 3 phần thôi ạ
a: Xét tứ giác MFCE có
\(\widehat{MFC}=\widehat{MEC}=\widehat{FCE}=90^0\)
Do đó: MFCE là hình bình hành
Suy ra: MC=EF
a: Xét ΔAHD có
M là trung điểm của HA
N là trung điểm của HD
Do đó: MN là đường trung bình của ΔAHD
Suy ra: MN//AD
a.
Do M là trung điểm BH, I là trung điểm AH
\(\Rightarrow IM\) là đường trung bình tam giác ABH
\(\Rightarrow IM||AB\Rightarrow ABMI\) là hình thang
b.
Cũng do IM là đường trung bình tam giác ABH \(\Rightarrow IM=\dfrac{1}{2}AB\)
Mà E là trung điểm CD \(\Rightarrow CE=\dfrac{1}{2}CD\)
Do ABCD là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AB=CD\\AB||CD\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}IM=CE\\IM||CD\end{matrix}\right.\) \(\Rightarrow IMCE\) là hình bình hành
c.
Do \(\left\{{}\begin{matrix}IM||AB\left(cmt\right)\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow IM\perp BC\)
Lại có \(BH\perp AC\Rightarrow BH\perp IC\)
\(\Rightarrow M\) là giao điểm 2 đường cao của tam giác IBC
\(\Rightarrow M\) là trực tâm tam giác ABC
\(\Rightarrow CM\) là đường cao thứ 3 hay \(CM\perp IB\)
Lại có \(CM||IE\) (do IMCE là hbh)
\(\Rightarrow IE\perp IB\Rightarrow\Delta IBE\) vuông tại I
\(\Rightarrow IG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow IG=\dfrac{1}{2}BE\)
\(\Delta BCE\) vuông tại C có \(CG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow CG=\dfrac{1}{2}BE\)
\(\Rightarrow CG=IG\) hay tam giác ICG cân tại G
d.
Từ K hạ \(KF\) vuông góc đường thẳng CD (F thuộc đường thẳng CD)
\(\Rightarrow KF||BC\) (cùng vuông góc CD)
\(\Rightarrow\widehat{BKF}=\widehat{HBC}\) (đồng vị) (1)
Lại có \(\widehat{HBC}=\widehat{BAC}\) (cùng phụ \(\widehat{ACB}\)) (2)
\(\widehat{BAC}=\widehat{CDB}\) (tính chất hình chữ nhật) (3)
Từ (1);(2);(3) \(\Rightarrow\widehat{BKF}=\widehat{CDB}\) (4)
Mà \(\left\{{}\begin{matrix}BK=AC\left(gt\right)\\AC=BD\left(\text{hai đường chéo hcn}\right)\end{matrix}\right.\)
\(\Rightarrow BK=BD\Rightarrow\Delta BDK\) cân tại B
\(\Rightarrow\widehat{BKD}=\widehat{BDK}\) (5)
(4);(5) \(\Rightarrow\widehat{BKF}+\widehat{BKD}=\widehat{CDB}+\widehat{BDK}\)
\(\Rightarrow\widehat{FKD}=\widehat{FDK}\)
\(\Rightarrow\Delta DKF\) vuông cân tại F
\(\Rightarrow\widehat{FDK}=45^0\) hay \(\widehat{KDC}=45^0\)