Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ΔHAB và ΔCBD có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(AB//CD;slt\right)\)
\(\Rightarrow\Delta HAB\sim\Delta CBD\left(g-g\right)\)
b, Xét ΔHDA và ΔADB có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{HD}{AD}\)
\(\Rightarrow AD^2=HD.BD\)
c, Xét tam giác ABD vuông A theo định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
Ta có \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\left(cmt\right)\)
hay \(\dfrac{8}{10}=\dfrac{HD}{8}\)
\(\Rightarrow DH=\dfrac{8.8}{10}=6,4\left(cm\right)\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
Do đó: ΔAHBΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
chung
Do đó: ΔADHΔBDA
Suy ra:
hay
a) Xét hình chữ nhật ABCD có:
AB//CD => \(\widehat{ABH}=\widehat{BDC}\) (2 góc so le trong)
Xét tam giác AHB và tam giác BCD có:
\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{BCD}=90^0\)
=> \(\Delta AHB\sim\Delta BCD\left(g.g\right)\)
b) Xét tam giác ADH và tam giác BDA có:
\(\widehat{ADB}\) chung
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{DH}=\dfrac{DB}{AD}\Rightarrow AD^2=DH.DB\)
c) Xét tam giác BDC vuông tại C có:
\(BD^2=BC^2+DC^2\) (Định lý Pytago)\(\Rightarrow BD=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có: \(AD^2=DH.DB\left(cmt\right)\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Xét tam giác ADH vuông tại H có:
\(AD^2=AH^2+DH^2\)( định lý Pytago)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)
a, Xét tam giác AHB và tam giác BCD ta có :
^AHB = ^BCD = 900
^BDC = ^ABH ( so le trong )
Vậy tam giác AHB ~ tam giác BCD ( c.g.c )
b, Xét tam giác ADB và tam giác HAD
^A = ^H = 900
^D _ chung
Vậy tam giác ADB ~ tam giác HAD ( g.g )
⇒ADAH=BDAD⇒ADAH=BDAD( tỉ số đồng dạng ) ⇒AD2=BD.DH
c) -Ta có: AD2= DH.DB(cmt)
=> DH= AD2:DB
DH=3^2:5=9:5=1,8
- Xét tam giác BDC vuông tại C có:
DB^2 = BC^2+CD^2
DB^2=3^2+4^2=25
=> BD=5cm
Ta có: tam giác AHB ~ tam giác BCD(CM câu a)
=> AH/BC=AB/BD
=> AH=AB.BC:BD
<=> AH=3.4:5=2,4cm
d) Ta có diện tích tam giác AHB= 1/2 AB.AH=1/2x2,4x4=4.8
Ta có diện tích tam giác BCD= 1/2 BC.DC=1/2x3x4=6
S ABH/ S BCD= 4,8/6=4/5
a: Xét ΔABD vuông tại A có
\(BD^2=AB^2+AD^2\)
nên BD=10(cm)
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Áp dụng định lý PI ta go vào tam giác ADB có :
\(DB=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
b.\(\text{Xét 2 tam giác ADH và tam giác ADB có:}\)
\(\widehat{A}=\widehat{H}=90^0\)
\(\widehat{D}\)\(\text{chung}\)
\(\Rightarrow\Delta ADH~\Delta ADB\left(gg\right)\)
b.\(\Rightarrow\frac{AD}{AD}=\frac{DH}{DB}\)
Hay \(\frac{AD}{DH}=\frac{DB}{AD}\)
\(\Rightarrow AD^2=DH.DB\)
c. \(\text{Xét 2 tam giác ABD và tam giác CDB có:}\)
\(\widehat{A}=\widehat{C}=90^0\)
\(\widehat{B_1}=\widehat{D_1}\left(slt\right)\)
\(\Rightarrow\Delta ABD~\Delta CDB\left(gg\right)\)
mà \(\Delta ADB~\Delta ADH\left(a\right)\)
\(\Rightarrow\Delta AHD~\Delta BCD\)
d. \(\Rightarrow\frac{AH}{BC}=\frac{HD}{CD}=\frac{AD}{BD}\)
\(\Rightarrow\frac{AH}{6}=\frac{DH}{8}=\frac{6}{10}\)
\(\Rightarrow AH=\frac{6.6}{10}=3,6\left(cm\right)\)
\(DH=\frac{6.8}{10}=4,8\left(cm\right)\)