Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
Do đó: ΔAHBΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
chung
Do đó: ΔADHΔBDA
Suy ra:
hay
Tham khảo lời giải tại link : https://h.vn/hoi-dap/question/249043.html
a. Xét tam giác AHB và tam giác BCD, có:
\(\widehat{AHB}=\widehat{BCD}=90^0\)
\(\widehat{ABH}=\widehat{CDB}\) ( cùng phụ với \(\widehat{B}\) )
Vậy tam giác AHB đồng dạng tam giác BCD ( g.g )
b.Xét tam giác AHD và tam giác ABD, có:
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\widehat{D}:chung\)
Vậy tam giác AHD đồng dạng tam giác ABD ( g.g )
\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\)
\(\Leftrightarrow AD^2=BD.DH\)
c. Áp dụng định lý pitago vào tam giác vuông ABD, có:
\(BD^2=AD^2+AB^2\)
\(\Rightarrow BD=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)
Ta có:\(AD^2=BD.DH\) ( cmt )
\(\Leftrightarrow3^2=5DH\)
\(\Leftrightarrow9=5DH\)
\(\Rightarrow DH=1,8cm\)
Áp dụng dịnh lý pitago vào tam giác vuông AHD, có:
\(AD^2=AH^2+DH^2\)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{3^2-1,8^2}=\sqrt{5,76}=2,4cm\)
a, Xét tam giác AHB và tam giác BCD có
^AHB = ^BCD = 900
^ABH = ^BDC ( soletrong )
Vậy tam giác AHB ~ tam giác BCD (g.g)
b, Xét tam giác AHD và yam giác BAD có
^AHD = ^BAD = 900
^D _ chung
Vậy tam giác AHD ~ tam giác BAD (g.g)
\(\dfrac{AD}{BD}=\dfrac{HD}{AD}\Rightarrow AD^2=HD.BD\)
c, Theo định lí Pytago tam giác DAB vuông tại A
\(BD=\sqrt{AB^2+AD^2}=5cm\)
Lại có \(\dfrac{AH}{AB}=\dfrac{AD}{BD}\Rightarrow AH=\dfrac{AD.AB}{BD}=\dfrac{12}{5}cm\)
\(HD=\dfrac{AD^2}{BD}=\dfrac{9}{5}cm\)
a, Xét tam giác AHB và tam giác BCD ta có :
^AHB = ^BCD = 900
AB = CD = 4 cm
^BDC = ^ABH ( so le trong )
Vậy tam giác AHB ~ tam giác BCD ( c.g.c )
b, Xét tam giác ADB và tam giác HAD
^A = ^H = 900
^D _ chung
Vậy tam giác ADB ~ tam giác HAD ( g.g )
\(\Rightarrow\frac{AD}{AH}=\frac{BD}{AD}\)( tỉ số đồng dạng ) \(\Rightarrow AD^2=BD.DH\)
c, Py ta go cho tam giác BAD ta có :
\(BD^2=AD^2+AB^2=9+16=25\Leftrightarrow BD=5\)cm
Lại có : \(AD^2=BD.DH\)hay \(9=5.DH\Rightarrow DH=\frac{9}{5}=1,8\)cm
\(\Rightarrow BH=BD-HD=5-1,8=3,2\)cm
Py ta go cho tam giác \(AB^2=BH^2+AH^2\Leftrightarrow16=3,2^2+AH^2\)
\(\Leftrightarrow AH^2=\sqrt{5,76}\Leftrightarrow AH=...\)tự tính
a, Xét ΔHAB và ΔCBD có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(AB//CD;slt\right)\)
\(\Rightarrow\Delta HAB\sim\Delta CBD\left(g-g\right)\)
b, Xét ΔHDA và ΔADB có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{HD}{AD}\)
\(\Rightarrow AD^2=HD.BD\)
c, Xét tam giác ABD vuông A theo định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
Ta có \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\left(cmt\right)\)
hay \(\dfrac{8}{10}=\dfrac{HD}{8}\)
\(\Rightarrow DH=\dfrac{8.8}{10}=6,4\left(cm\right)\)
a, Xét tam giác AHB và tam giác BCD ta có :
^AHB = ^BCD = 900
^BDC = ^ABH ( so le trong )
Vậy tam giác AHB ~ tam giác BCD ( c.g.c )
b, Xét tam giác ADB và tam giác HAD
^A = ^H = 900
^D _ chung
Vậy tam giác ADB ~ tam giác HAD ( g.g )
⇒ADAH=BDAD⇒ADAH=BDAD( tỉ số đồng dạng ) ⇒AD2=BD.DH
c) -Ta có: AD2= DH.DB(cmt)
=> DH= AD2:DB
DH=3^2:5=9:5=1,8
- Xét tam giác BDC vuông tại C có:
DB^2 = BC^2+CD^2
DB^2=3^2+4^2=25
=> BD=5cm
Ta có: tam giác AHB ~ tam giác BCD(CM câu a)
=> AH/BC=AB/BD
=> AH=AB.BC:BD
<=> AH=3.4:5=2,4cm
d) Ta có diện tích tam giác AHB= 1/2 AB.AH=1/2x2,4x4=4.8
Ta có diện tích tam giác BCD= 1/2 BC.DC=1/2x3x4=6
S ABH/ S BCD= 4,8/6=4/5