K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A có 

\(BD^2=AB^2+AD^2\)

nên BD=10(cm)

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

21 tháng 3 2021

21 tháng 3 2021

19 tháng 8 2021

a) Xét hình chữ nhật ABCD có:

AB//CD => \(\widehat{ABH}=\widehat{BDC}\) (2 góc so le trong)

Xét tam giác AHB và tam giác BCD có:

\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)

\(\widehat{AHB}=\widehat{BCD}=90^0\)

=> \(\Delta AHB\sim\Delta BCD\left(g.g\right)\)

b) Xét tam giác ADH và tam giác BDA có:

\(\widehat{ADB}\) chung

\(\widehat{AHD}=\widehat{BAD}=90^0\)

\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DH}=\dfrac{DB}{AD}\Rightarrow AD^2=DH.DB\)

c) Xét tam giác BDC vuông tại C có: 

\(BD^2=BC^2+DC^2\) (Định lý Pytago)\(\Rightarrow BD=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có: \(AD^2=DH.DB\left(cmt\right)\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Xét tam giác ADH vuông tại H có:

\(AD^2=AH^2+DH^2\)( định lý Pytago)

\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)

hay \(AD^2=HD\cdot BD\)

19 tháng 5 2022

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

ABH^=BDC^

Do đó: ΔAHBΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

ADH^ chung

Do đó: ΔADHΔBDA

Suy ra: ADBD=HDDA

hay 

16 tháng 2 2021

100 nha

8 tháng 4 2022

a, Xét ΔHAB và ΔCBD có :

\(\widehat{H}=\widehat{C}=90^0\)

\(\widehat{ABH}=\widehat{BDC}\left(AB//CD;slt\right)\)

\(\Rightarrow\Delta HAB\sim\Delta CBD\left(g-g\right)\)

b, Xét ΔHDA và ΔADB có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{D}:chung\)

\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{HD}{AD}\)

\(\Rightarrow AD^2=HD.BD\)

c, Xét tam giác ABD vuông A theo định lý Pi-ta-go ta được :

\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)

Ta có \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\left(cmt\right)\)

hay \(\dfrac{8}{10}=\dfrac{HD}{8}\)

\(\Rightarrow DH=\dfrac{8.8}{10}=6,4\left(cm\right)\)

4 tháng 5 2017

Vào câu hỏi tương tự kiếm thử đii

4 tháng 5 2017

ko giống khác tý bạn ơi

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm