Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: \(CD\subset\left(HKCD\right)\)
\(CD\subset\left(ABCD\right)\)
Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)
a: \(O\in BD\subset\left(SBD\right)\)
\(O\in AC\subset\left(SAC\right)\)
Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)
b: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c; AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
a: \(O\in BD\subset\left(SBD\right)\)
\(O\in AC\subset\left(SAC\right)\)
=>\(O\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)
b: \(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
=>(SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: \(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
d: \(CD\subset\left(HKCD\right)\)
\(CD\subset\left(ABCD\right)\)
Do đó: (HKCD) giao (ABCD)=CD
a: Trong mp(ABCD), gọi N là giao điểm của AD và BC
\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)
=>\(N\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)
b: Gọi H là giao điểm của SG với CD
Xét ΔSCD có
G là trọng tâm
H là giao điểm của SG với DC
Do đó: H là trung điểm của DC
Chọn mp(SAH) có chứa MG
Trong mp(ABCD), gọi E là giao điểm của AH với BD
\(E\in AH\subset\left(SAH\right)\)
\(E\in BD\subset\left(SBD\right)\)
Do đó: \(E\in\left(SAH\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAH\right)\cap\left(SBD\right)\)
nên \(\left(SAH\right)\cap\left(SBD\right)=SE\)
Gọi K là giao điểm của MG với SE
=>K là giao điểm của MG với (SBD)
a: \(I\in BD\subset\left(SBD\right)\)
\(I\in AC\subset\left(SAC\right)\)
Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SI\)
b: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
Qua S kẻ đường thẳng d song song AD (và BC)
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)
Trong mp (ABCD), nối MN kéo dài lần lượt cắt AB và AD kéo dài tại E và F
Trong mp (SAB), nối PE cắt SA tại G \(\Rightarrow PG=\left(MNP\right)\cap\left(SAB\right)\)
Trong mp (SAD), nối PF cắt SD tại H \(\Rightarrow PH=\left(MNP\right)\cap\left(SAD\right)\)
\(NH=\left(MNP\right)\cap\left(SCD\right)\)
\(GM=\left(MNP\right)\cap\left(SBC\right)\)
S A B C D M H K N O
a/
Ta có
\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)
b/
Xét tg SAD có
MA=MD; HA=HS => MH là đường trung bình của tg SAD
=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)
Xét tg SAB có
HA=HS; KS=KB => MH là đường trung bình của tg SAB
=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)
Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến
c/
Gọi O là trung điểm BD, Nối MO cắt BC tại N
Xét tg ABD có
MA=MD; OB=OD => MO là đường trung bình của tg ABD
=> MO//AB; mà HK//AB (cmt) => MO//HK
=> M; O; H; K cùng thuộc mặt phẳng MKH
\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)
Mà \(N\in BC\)
=> N là giao của BC với (MKH)
Ta có MO//HK => MN//HK => MHNK là hình thang