K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Đáp án D

Từ O kẻ OH vuông góc với SC, ta có S C ⊥ ( B D H )

Ta có V S . A H D V S . A C D = S H S C , V S . A H B V S . A C B = S H S C

mà  V S . A C D = V S . A C B = 1 2 V S . A B C D = V 2

nên  V S . A H D + V S . A H B V 2 = 2 S H S C

⇔ V S . A B H D V = S H S C

Có B C ⊥ ( S A M ) nên

⇒ S A = 3 a 2

Mặt khác: ∆ C A S ~ ∆ C H O

Suy ra S H S C = S C - H C S C = 1 - H C S C = 11 13

⇒ V S . A B H D = 11 13 V  

Do  đó

V H . B C D = V - V S . A B H D = V = 11 12 V = 2 13 V

8 tháng 5 2019

8 tháng 5 2017

30 tháng 10 2018

21 tháng 11 2019

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

15 tháng 2 2018

Chọn C

3 tháng 12 2018

Đáp án B

16 tháng 8 2017

9 tháng 5 2017

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.