Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
=> SB là hình chiếu của SC lên mặt phẳng (SAB).
.
Xét tam giác SBC vuông tại B có
Xét tam giác SAB vuông tại A có:
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)
Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)
\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên và đáy hay \(\widehat{SMO}=60^0\)
\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)
\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)
Đáp án C
Ta có tam giác SAO vuông cân tạiA.
Suy ra:
S
A
=
O
A
=
A
C
2
=
a
2
2
Vậy : V S . A B C D = 1 3 . S O . S A B C D = a 3 2 6
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Đáp án C
là góc giữa hai mặt phẳng (SAD) và (ABCD). Do đó, ta có góc SAB = 600.
Tam giác SAB vuông tại B có SAB = 600 nên SB = AB.tan60 = 2a√3
Vậy thể tích V của khối chóp S.ABCD là:
V = 1 3 S A B C D . S B = 1 3 . 4 a 2 . 2 a 3 = 8 a 3 3 3