K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2021

Kẻ MK vuông góc AC

\(\left\{{}\begin{matrix}MK\perp AC\subset\left(SAC\right)\\MK\perp SA\subset\left(SAC\right)\end{matrix}\right.\Rightarrow MK\perp\left(SAC\right)\)

\(\Rightarrow d\left(M,\left(SAC\right)\right)=KM=\dfrac{1}{2}AB=\dfrac{1}{2}\sqrt{16a^2-4a^2}=a\sqrt{3}\)

9 tháng 10 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)

⇒ BC ⊥ SB.

⇒ tam giác SBC vuông tại B.

b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)

⇒ (SBH) ⊥ (SAC).

c) d[B, (SAC)] = BH. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

26 tháng 4 2018

Đáp án A

∆ AMB là tam giác đều cạnh a (vì AM = MB = a và A B M ^   =   60 0 )

Gọi H là chân đường cao hạ từ S xuống (ABC). Do SA = SB = SM nên H trùng với trọng tâm tam giác AMB.

Ta có  

Vậy SH = 

12 tháng 6 2018

Đáp án C

Ta có M là trung điểm của BC nên

Suy ra tam giác ABM là tam giác đều. Gọi H là hình chiếu vuông góc của S xuốn  (ABM).

Suy ra H là tâm đường tròn ngoại tiếp tam giác ABM

Khi đó 

12 tháng 2 2018

Đáp án C

Dựng  

Dựng

=> d(B;(SAC))

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644. 

25 tháng 5 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Gọi (α) là mặt phẳng qua SM và song song với AB.

Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.

Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.

+ Xác định khoảng cách.

Qua N kẻ đường thẳng d’ song song với AB.

Gọi (P) là mặt phẳng đi qua SN và d’.

Ta có: AB // (P).

Khi đó: d(AB, SN) = d(A, (P)).

Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:

d(AB, SN) = d(A, (SND)) = AH.

Trong tam giác SAD, ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác SAB, ta có S A   =   A B . tan 60 o   =   2 a 3 và AD = MN = BC/2 = a.

Thế vào (1), ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi K là trung điểm của SA
=>KM//SC

=>SC//(KMB)

d(SC;BM)=d(S;(KBM))=SK/SA*d(A;(KBM))=d(A;(KBM))

=>ΔABC đều

=>BM vuông góc AC

=>BM vuông góc (SAC)

Kẻ AQ vuông góc KM

=>AQ vuông góc (KMB)

=>d(A;(KMB))=AQ

\(SC=\sqrt{9a^2+4a^2}=a\sqrt{13}\)

KM=1/2SC=a*căn 3/2

=>\(AQ=\dfrac{3\sqrt{13}}{13}\)

=>d(BM;SC)=3*căn 13/13

24 tháng 12 2019

9 tháng 5 2017

 

 

Đáp án A

Do  SA (ABC) tại A nên A là hình chiếu của S lênmặt phẳng (ABC) kéo theo AE  là hình chiếu của AE lên mặt phẳng (ABC).

Áp dụng định lý Py-ta-go trong  ∆ S A E  vuông tại B, ta có:

Trong  ∆ S A E  vuông tại A SA (ABC) nên  SA ⊥ AE, ta có: