Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành. Từ O hạ đường cao OO' vuông góc với d tại O'.
Ta có \(\hept{\begin{cases}OA=OC\\OO'\text{//}AH\end{cases}\Rightarrow}\) OO' là đường trung bình của tam giác AHC => AH = 2OO' (1)
Xét tứ giác BDKI có : \(\hept{\begin{cases}DK\text{//}OO'\text{//}BI\\OB=OD\end{cases}\Rightarrow}\) OO' là đường trung bình của hình thang BDKI
=> DK + BI = 2OO' (2)
Từ (1) và (2) suy ra AH = BI + DK.
Bạn sửa lại đề bài cho đúng nhé!
Gọi F là giao điểm của AH và BC. Kẽ DF vuông góc với AH
Ta có \(\widehat{AEH}=\widehat{AHC}=\widehat{DKC}=90\)
\(\Rightarrow DEHK\)là hình chữ nhật
\(\Rightarrow HE=DK\left(1\right)\)
Ta có \(\widehat{DAF}=\widehat{AFB\:}\)(AD // BC)
\(\widehat{IBF}=\widehat{AFB\:}\)(BI // AH)
\(\Rightarrow\widehat{DAF}=\widehat{IBF}\)
\(\widehat{AFD}=\widehat{BIC}=90\)
AD = BC
\(\Rightarrow\Delta BIC=\Delta AED\)
\(\Rightarrow BI=AE\left(2\right)\)
Từ (1) và (2) => AE + HE = AH = BI + DK
PS: Phải là chứng minh AH = BI + DK mới đúng nha
a: Xét ΔIDC vuông tại I và ΔKDB vuông tại K có
góc IDC chung
=>ΔIDC đồng dạng với ΔKDB
b: Xét ΔBHA vuông tại H và ΔBKC vuông tại K co
góc BAH=góc BCK
=>ΔBHA đồng dạng với ΔBKC
=>BH/BK=BA/BC
=>BK*BA=BH*BC
a) \(\widehat{FAD}=\widehat{BEC}=90^0;\widehat{DAF}=\widehat{ECB};AD=BC\)
\(\Rightarrow\)△ADF=△CBE (g-c-g) \(\Rightarrow DF=BE\)
DF//BE (cùng vuông góc với AC) \(\Rightarrow\)BEDF là hình bình hành.
b) \(CH.CD=CH.AB=S_{ABCD}=CK.CD=CK.BC\)
c) △ABE∼△ACH (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{CH}\Rightarrow AB.CH=AC.BE\)
△BEC∼△CKA \(\Rightarrow\dfrac{BC}{CA}=\dfrac{EC}{AK}\Rightarrow BC.AK=AC.EC\)
\(AB.CH+BC.AK=AB.CH+AD.AK=AC.BE+AC.EC=AC.\left(BE+EC\right)=AC.AC=AC^2\)
a:Gọi O là giao của AC và BD
=>O là trung điểm chung của AC và BD
Xét ΔOEB vuông tạiE và ΔOFD vuông tại F có
OB=OD
góc BOE=góc DOF
=>ΔOEB=ΔOFD
=>BE=DF
mà BE//DF
nên BEDF là hình bình hành
b: Xét ΔCHB vuông tại H và ΔCKD vuông tại K có
góc CBH=góc CDK
=>ΔCHB đồng dạng với ΔCKD
=>CH/CK=CB/CD
=>CH*CD=CK*CB