K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

ai giúp mình với

17 tháng 11 2016

A B C D O H K I O' d

Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành. Từ O hạ đường cao OO' vuông góc với d tại O'.

Ta có \(\hept{\begin{cases}OA=OC\\OO'\text{//}AH\end{cases}\Rightarrow}\) OO' là đường trung bình của tam giác AHC => AH = 2OO'                        (1)

Xét tứ giác BDKI có : \(\hept{\begin{cases}DK\text{//}OO'\text{//}BI\\OB=OD\end{cases}\Rightarrow}\) OO' là đường trung bình của hình thang BDKI

=> DK + BI = 2OO'                                                                                                                                (2)

Từ (1) và (2) suy ra AH = BI + DK.

Bạn sửa lại đề bài cho đúng nhé!

17 tháng 11 2016

A B C D (d) H I K E F

Gọi F là giao điểm của AH và BC. Kẽ DF vuông góc với AH

Ta có \(\widehat{AEH}=\widehat{AHC}=\widehat{DKC}=90\)

\(\Rightarrow DEHK\)là hình chữ nhật

\(\Rightarrow HE=DK\left(1\right)\)

Ta có \(\widehat{DAF}=\widehat{AFB\:}\)(AD // BC)

\(\widehat{IBF}=\widehat{AFB\:}\)(BI // AH)

\(\Rightarrow\widehat{DAF}=\widehat{IBF}\)

\(\widehat{AFD}=\widehat{BIC}=90\)

AD = BC

\(\Rightarrow\Delta BIC=\Delta AED\)

\(\Rightarrow BI=AE\left(2\right)\)

Từ (1) và (2) => AE + HE = AH = BI + DK

PS: Phải là chứng minh AH = BI + DK mới đúng nha

17 tháng 3 2022

a) \(\widehat{FAD}=\widehat{BEC}=90^0;\widehat{DAF}=\widehat{ECB};AD=BC\)

\(\Rightarrow\)△ADF=△CBE (g-c-g) \(\Rightarrow DF=BE\)

DF//BE (cùng vuông góc với AC) \(\Rightarrow\)BEDF là hình bình hành.

b) \(CH.CD=CH.AB=S_{ABCD}=CK.CD=CK.BC\)

c) △ABE∼△ACH (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{CH}\Rightarrow AB.CH=AC.BE\)

△BEC∼△CKA \(\Rightarrow\dfrac{BC}{CA}=\dfrac{EC}{AK}\Rightarrow BC.AK=AC.EC\)

\(AB.CH+BC.AK=AB.CH+AD.AK=AC.BE+AC.EC=AC.\left(BE+EC\right)=AC.AC=AC^2\)

a:Gọi O là giao của AC và BD

=>O là trung điểm chung của AC và BD

Xét ΔOEB vuông tạiE và ΔOFD vuông tại F có

OB=OD

góc BOE=góc DOF

=>ΔOEB=ΔOFD

=>BE=DF

mà BE//DF

nên BEDF là hình bình hành

b: Xét ΔCHB vuông tại H và ΔCKD vuông tại K có

góc CBH=góc CDK

=>ΔCHB đồng dạng với ΔCKD

=>CH/CK=CB/CD

=>CH*CD=CK*CB