K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

Đoạn thẳng f: Đoạn thẳng [A, D] Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng j: Đoạn thẳng [B, C] Đoạn thẳng k: Đoạn thẳng [D, C] Đoạn thẳng l: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, E] Đoạn thẳng q: Đoạn thẳng [D, F] Đoạn thẳng b: Đoạn thẳng [H, B] Đoạn thẳng c: Đoạn thẳng [D, K] Đoạn thẳng d: Đoạn thẳng [C, K] Đoạn thẳng e: Đoạn thẳng [H, C] Đoạn thẳng f_1: Đoạn thẳng [H, K] A = (3.41, -6.39) A = (3.41, -6.39) A = (3.41, -6.39) D = (29.5, -6.48) D = (29.5, -6.48) D = (29.5, -6.48) B = (12.08, 5.05) B = (12.08, 5.05) B = (12.08, 5.05) Điểm C: Giao điểm đường của h, i Điểm C: Giao điểm đường của h, i Điểm C: Giao điểm đường của h, i Điểm E: Giao điểm đường của m, l Điểm E: Giao điểm đường của m, l Điểm E: Giao điểm đường của m, l Điểm F: Giao điểm đường của n, l Điểm F: Giao điểm đường của n, l Điểm F: Giao điểm đường của n, l Điểm H: Giao điểm đường của r, t Điểm H: Giao điểm đường của r, t Điểm H: Giao điểm đường của r, t Điểm K: Giao điểm đường của s, a Điểm K: Giao điểm đường của s, a Điểm K: Giao điểm đường của s, a

1/ Xét tam giác ABE và CDF có:

\(\widehat{AEB}=\widehat{CFD}=90^o\)

AB = CD (Hai cạnh đối của hình bình hành)

\(\widehat{BAE}=\widehat{DCF}\) (So le trong)

nên \(\Delta ABE=\Delta CDF\) (Cạnh huyền - góc nhọn)

\(\Rightarrow BE=DF\)

Lại có BE và DF cùng vuông góc với AC nên BE // DF

Xét tứ giác BEDF có BE // DF và BE = DF nên BEDF là hình bình hành,

2/ Ta có do BC// AD nên \(\widehat{HBC}=\widehat{BAD}\)  (Hai góc đồng vị)

Dó AB// CD nên \(\widehat{KDC}=\widehat{BAD}\)  (Hai góc đồng vị)

Vậy nên \(\widehat{KDC}=\widehat{HBC}\)

Suy ra \(\Delta CHB\sim\Delta CKD\left(g-g\right)\Rightarrow\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CK}=\frac{CB}{AB}\)  

Theo tính chất góc ngoài, ta có \(\widehat{ABC}=\widehat{BHC}+\widehat{HCB}=90^o+\widehat{HCB}\)

Do BC // AD; \(CK\perp AD\Rightarrow CK\perp BC\)

Suy ra  \(\widehat{KCH}=\widehat{KCB}+\widehat{HCB}=90^o+\widehat{HCB}\)

Vậy \(\widehat{ABC}=\widehat{KCH}\)

Xét tam giác ABC và KCH có:

\(\widehat{ABC}=\widehat{KCH}\)

\(\frac{CH}{CK}=\frac{CB}{AB}\)

nên \(\Delta ABC\sim\Delta KCH\left(c-g-c\right)\)

*)  Ta có \(\Delta ABE\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB.AH=AC.AE\)

Tương tự \(\Delta AFD\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AC.AF\)

Suy ra \(AB.AH+AD.AK=AC.AE+AC.AF=AC\left(AE+AF\right)\)

Theo câu a, \(\Delta ABE=\Delta CDF\Rightarrow AE=CF\)

Vậy thì AE + AF = CF + AF = AC

Hay AB.AH + AD.AK = AC.AC = AC2

15 tháng 10 2017

cảm ơn bạn nhiều ạ ! @Hoàng_Thị_Thu_Huyền ! 

23 tháng 8 2020

Bạn tham khảo tại link này nha, mình giải rất chi tiết cả 3 câu a; b; c rồi đó nhaaaaaa !!!!!

Link nè: https://olm.vn/hoi-dap/detail/261219264881.html

21 tháng 8 2020

a/ Xét tg vuông ADF và tg vuông ACK có ^CAK chung 

=> tg ADF đồng dạng với tg ACK \(\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AF.AC=AK.AD\)

b/

BE vuông góc AC; DF vuông góc với AC => BE//DF (Hai đường thẳng cùng vuông góc với 1 dt thứ 3 thì chúng // với nhau) (1)

Xét tg vuông ABE và tg vuông CDF có 

AB=CD (cạnh đối hbh)

AB//CD => ^BAE=^DCF (góc so le trong

=> tg ABE = tg CDF => BE=DF (2)

Từ (1) và (2) => BEDF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)

21 tháng 8 2020

Bạn tự vẽ hình nha, mình ko bt vẽ hình trên OLM đâu.

a) Xét 2 tam giác AFD và tam giác AKC có:

*Chung góc DAF

*Góc AFD = Góc AKC = 90 độ (gt)

=>   Tam giác AFD đồng dạng tam giác AKC (gg)

=>   \(\frac{AF}{AD}=\frac{AK}{AC}\)

=>   \(AF.AC=AK.AD\)      (ĐPCM)

b) Do ABCD là hình bình hành (gt)

=>   Góc DAF  = Góc BCE (2 góc SLT)

Xét tam giác ADF và tam giác CBE có:

+ DAF  = BCE (cmt)

+ AFD = BEC = 90 độ (gt)

=> Tam giác ADF đồng dạng tam giác BCE (gg)

=>  góc ADF = góc CBE

Xét tam giác ADF và tam giác CBE có:

*AD=BC (Do ABCD là hình bình hành)

*DAF = BCE (cmt)

*ADF = CBE (cmt)

=> Tam giác ADF  =  Tam giác CBE (gcg)

=> \(DF=BE\)       (1)

Có:  DF và BE cùng vuông góc với AC (gt)

=> DF // BE                 (2)

TỪ (1) VÀ (2) =>   Tứ giác BEDF là hình bình hành.