K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2020

A B C D M N E

a/ Ta có

\(CN\in BC;DM\in AD\)

BC//AD

=> CN//DM (1)

Ta có

\(CN=\frac{BC}{2};DM=\frac{AD}{2};BC=AD\Rightarrow CN=DM\) (2)

Từ (1) và (2) => MNCD là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau thì tứ giác đó là hbh)

b/

Do MNEC là hbh => MN//CD mà CD//AB => MN//AB

Mà AB vuông có Với CE => MN vuông góc với CE => MN là đường cao của tg MEC (3)

Xét tg BEC có

N là trung điểm BC

MN//AB (cmt)

=> MN đi qua trung điểm của CE (trong 1 tf đường thẳng đi qua trung điểm của 1 cạnh và // với cạnh thứ 2 thì nó đi qua trung điểm của cạnh còn lại)  mà MN vuông góc CE (cmt) => MN là đường trung trực thuccj cạnh CE của tg MCE (4)

Từ (3) và (4) => tg MCE cân tại M (trong 1 tg có đường cao đồng thời là đường trung trực thì tg đó là tg cân)

c/ Xét hbh MNCD có

\(MN=CD=AB;CN=AB=\frac{BC}{2}\)

=> MNCD là hình thoi => \(\widehat{NMC}=\widehat{CMD}\) (trong hình thoi đường chéo là đường phân giác của 2 góc đối nhau) (5)

Xét tg cân MCE có MN là đường cao => MN là phân giác của \(\widehat{CME}\) (trong tg cân đường cao đồng thời là đường phân giác)

\(\Rightarrow\widehat{EMN}=\widehat{NMC}\) (6)

Từ (5) và (6) \(\Rightarrow\widehat{EMN}=\widehat{NMC}=\widehat{CMD}\Rightarrow\widehat{EMD}=\widehat{EMN}+\widehat{NMC}+\widehat{CMD}=3.\widehat{EMN}\) (7)

Do MN//AB \(\Rightarrow\widehat{AEM}=\widehat{EMN}\) (góc so le trong) (8)

Từ (7) và (8) \(\Rightarrow\widehat{EMD}=3.\widehat{AEM}\left(dpcm\right)\)

18 tháng 8 2016

A) ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE) 
và MD//NC (AD//BC) 
=> MNCD là hình bình hành (1) 
MD=AD/2 
MN=AB=AD/2 
nên MD=MN (2) 
từ (1)(2) => MNCD là hình thoi. 
B) do MN//AB//CD(câu a) 
và M là trung điểm AD 
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC 
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC) 
=> tam giác MEC cân tại M 
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC 
=> MF là đường phân giác của tam giác MEC 
=> góc EMF=góc FMC 
góc AEM=góc EMF(AB//MN) 
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác) 
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD 
=> 2AEM=FMC+CMD 
=> 2AEM=NMD=BAD(AB//MN) 

18 tháng 8 2016

Bổ sung: Vậy EMD = 3AEM

15 tháng 8 2016

Kẻ MH (H thuộc BC) song song AB cắt EC tại I. Ta có ngay H là trung điểm BC. Do đó I là trung điểm EC. Suy ra tam giác MIE = tam giác MIC. Suy ra góc EMI=CMI. Và AEM=EMI (so le trong) (1)

Lại có tam giác DMC cân tại D nên DMC=DCM, và DCM=CMI (so le trong) (2).

Từ (1) và (2), suy ra: EMD = EMI+CMI+DMC= 3AEM.

18 tháng 11 2019

ko bit

Ta có : MN\(\perp\)EC

AB\(\perp\)EC 

=> AB // MN 

Vì ABCD là hình bình hành 

=> AD = BC 

=> AB // CD

=> AB // CD // MN 

Xét tứ giác AECD có :

M là trung điểm AD 

MF // AE 

=> F là trung điểm EC 

Xét \(\Delta CEB\)có :

F là trung điểm EC

FN// EB 

=> N là trung điểm BC 

Ta có : AM = MD = \(\frac{AD}{2}\)

BN = NC = \(\frac{BC}{2}\)

=> MD = NC 

Xét tứ giác MNCD có :

MN // DC 

MD = NC 

=>MNCD là hình bình hành 

Vì F là trung điểm EC

=> EF = FC

Xét \(\Delta MEC\)có :

MF \(\perp\)EC

EF = FC

=> \(\Delta MEC\)cân tại M 

7 tháng 11 2016

a, Ta có : CE vuông góc với AB

Mà CE đi qua MN và vuông góc với MN

=> AB//MN

Mà : AB//DC

=>MN//DC

Xét tứ giác MNCD có :

MN//DC (cmt)

MD//NC

=> MNCD là hình bình hành (có các cạnh đối bằng nhau)

b,Xét tam giác EBC có :

BN=NC ( MN//DC và AM=MD => MN là đtb của tứ giác ABCD => BN=NC)

7 tháng 11 2016

Xin lỗi cho mình làm tiếp theo nha bạn .

Và : FN//EB   (MN//AB)

=> FN là đtb của tam giác EBC

=> EF=FC

* Ta lại xét tam giác MEF và tam giác MFC có :

MF cạnh chung

F=90

EF=FC (cmt)

=> tg MEF=tg MFC (cgc)

=> ME=MC

=> tam giác MEC là tam giác cân

c, mk không biết

nhớ k nhé