K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEAD và ΔFCB có

góc A=góc C

AD=CB

góc ADE=góc CBF(góc ADE=1/2*góc ADC=1/2*góc ABC=góc CBF)

Do đó; ΔEAD=ΔFCB

=>AE=CF

b: AE+EB=AB

CF+FD=CD

mà AB=CD và AE=CF

nên EB=FD

Xét tứ giác DEBF có

BE//FD

BE=FD

=>DEBF là hình bình hành

c: ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(1)

DEBF là hbh

=>DB cắt EF tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

a: Ta có: \(\widehat{ADE}=\dfrac{\widehat{ADC}}{2}\)

\(\widehat{CBF}=\dfrac{\widehat{CBA}}{2}\)

mà \(\widehat{ADC}=\widehat{CBA}\)

nên \(\widehat{ADE}=\widehat{CBF}\)

Xét ΔADE và ΔCBF có 

\(\widehat{ADE}=\widehat{CBF}\)

AD=BC

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF

Ta có: AE+EB=AB

CF+DF=CD

mà AB=CD

và AE=CF

nên EB=DF

Xét tứ giác DEBF có 

EB//DF

EB=DF

Do đó: DEBF là hình bình hành

Suy ra: DE//BF

d: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

e: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường\(\left(1\right)\)

Ta có: EBFD là hình bình hành

nên Hai đường chéo EF và BD cắt nhau tại trung điểm của mỗi đường\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AC,BD,EF đồng quy

24 tháng 10 2021

Xét ΔADE và ΔCBF có 

\(\widehat{ADE}=\widehat{CBF}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF và DE=BF

Ta có: AE+BE+AB

CF+FD=CD

mà AB=CD

và AE=CF

nên BE=FD

Xét tứ giác BEDF có 

BE=DF

DE=BF

Do đó: BEDF là hình bình hành

Suy ra: DE//BF

loading...  loading...  

a: Xét ΔDAM và ΔBCN có 

\(\widehat{D}=\widehat{B}\)

DA=BC

\(\widehat{DAM}=\widehat{BCN}\)

Do đó: ΔDAM=ΔBCN

Suy ra: AM=CN và DM=BN

Ta có: AN+NB=AB

CM+MD=CD

mà AB=CD

và DM=BN

nên AN=CM

Xét tứ giác AMCN có 

AN//CM

AM//CN

Do đó: AMCN là hình bình hành

24 tháng 7 2023

tại sao DAM lại bằng BCN ạ?

 

22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành

Ta có: \(\widehat{ADE}=\widehat{CDE}=\dfrac{\widehat{ADC}}{2}\)(DE là phân giác của góc ADC)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{\widehat{ABC}}{2}\)(BF là phân giác của góc ABC)

mà \(\widehat{ADC}=\widehat{ABC}\)(ABCD là hình bình hành)

nên \(\widehat{ADE}=\widehat{CDE}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔADE và ΔCBF có

\(\widehat{EAD}=\widehat{FCB}\)(ABCD là hình bình hành)
AD=CB

\(\widehat{ADE}=\widehat{CBF}\)(cmt)

Do đó: ΔADE=ΔCBF

=>AE=CF

Ta có: AE+EB=AB

CF+FD=CD

mà AE=CF và AB=CD

nên EB=FD

Ta có: AB//CD

E\(\in\)AB

F\(\in\)CD

Do đó: BE//DF

Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

4 tháng 1

cảm ơn bạn

 

2 tháng 11 2018

a) Ta có A E D ^ = E D C ^   v à   A B F ^ = E D C ^ ⇒ D E / / B F  (có góc ở vị trí đồng vị bằng nhau).

b) Từ câu a) suy ra DEBF là hình bình hành.