K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

Giải bài 45 trang 92 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Ta có:

+ ABCD là hình bình hành ⇒ AB // CD ⇒ Giải bài 45 trang 92 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc đồng vị) (1)

+ DE là tia phân giác của góc D

Giải bài 45 trang 92 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà hai góc này ở vị trí đồng vị ⇒ DE // BF (đpcm)

b) Tứ giác DEBF có:

DE // BF (chứng minh ở câu a)

BE // DF (vì AB // CD)

⇒ DEBF là hình bình hành.

22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành

21 tháng 4 2017

Hỏi đáp Toán

2 tháng 11 2018

a) Ta có A E D ^ = E D C ^   v à   A B F ^ = E D C ^ ⇒ D E / / B F  (có góc ở vị trí đồng vị bằng nhau).

b) Từ câu a) suy ra DEBF là hình bình hành.

a: Ta có: \(\widehat{ADE}=\dfrac{\widehat{ADC}}{2}\)

\(\widehat{CBF}=\dfrac{\widehat{CBA}}{2}\)

mà \(\widehat{ADC}=\widehat{CBA}\)

nên \(\widehat{ADE}=\widehat{CBF}\)

Xét ΔADE và ΔCBF có 

\(\widehat{ADE}=\widehat{CBF}\)

AD=BC

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF

Ta có: AE+EB=AB

CF+DF=CD

mà AB=CD

và AE=CF

nên EB=DF

Xét tứ giác DEBF có 

EB//DF

EB=DF

Do đó: DEBF là hình bình hành

Suy ra: DE//BF

d: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

e: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường\(\left(1\right)\)

Ta có: EBFD là hình bình hành

nên Hai đường chéo EF và BD cắt nhau tại trung điểm của mỗi đường\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AC,BD,EF đồng quy

5 tháng 10 2015

bạn vẽ hình nhé

a) ta có ABCD là hbh nên góc D = góc B

=> góc EDF = 1/2 góc D = 1/ góc B = góc EBF 

ta lại có:  góc EBF bù góc BFD (là hai góc trong cùng phía của hai đường thẳng // - AB//DC)

nên góc EDF cũng bù với góc BFD suy ra DE // DF ( có  hai góc trong cùng phia bù nhau)

b) xét tư giác DEBF có

BE// DF (gt)

DE// BF (cmt)

vậy DEBF là hình bình hành

10 tháng 8 2018

có bn nào bít ve hình ko

24 tháng 10 2021

Xét ΔADE và ΔCBF có 

\(\widehat{ADE}=\widehat{CBF}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF và DE=BF

Ta có: AE+BE+AB

CF+FD=CD

mà AB=CD

và AE=CF

nên BE=FD

Xét tứ giác BEDF có 

BE=DF

DE=BF

Do đó: BEDF là hình bình hành

Suy ra: DE//BF