K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2021

\(\left\{{}\begin{matrix}m^2x+my=m\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=-1\\x+my=m+1\end{matrix}\right.\)

- Với \(m=\pm1\Rightarrow0.x=-1\) hệ vô nghiệm

- Không tồn tại m để hệ có vô số nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất

27 tháng 2 2021

`a,x-3y=2`

`<=>x=3y+2` ta thế vào phương trình trên:

`2(3y+2)+my=-5`

`<=>6y+4+my=-5`

`<=>y(m+6)=-9`

HPT có nghiệm duy nhất:

`<=>m+6 ne 0<=>m ne -6`

HPT vô số nghiệm

`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`

HPT vô nghiệm

`<=>m+6=0,-6 ne 0<=>m ne -6`

b,HPT có nghiệm duy nhất

`<=>m ne -6`(câu a)

`=>y=-9/(m+6)`

`<=>x=3y+2`

`<=>x=(-27+2m+12)/(m+6)`

`<=>x=(-15+2m)/(m+6)`

`x+2y=1`

`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`

`<=>(2m-33)/(m+6)=1`

`2m-33=m+6`

`<=>m=39(TM)`

Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`

b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)

Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)

\(\Leftrightarrow2m-33=m+6\)

\(\Leftrightarrow2m-m=6+33\)

hay m=39

Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1

19 tháng 11 2023

Để hệ vô nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}< >\dfrac{2m}{m+6}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{1}{m}< >\dfrac{2m}{m+6}\\\dfrac{m}{4}< >\dfrac{2m}{m+6}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\2m^2< >m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-m-6< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(2m+3\right)< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\notin\left\{2;-\dfrac{3}{2}\right\}\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{2m}{m+6}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\2m^2=m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-m-6=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-4m+3m-6=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(2m+3\right)=0\end{matrix}\right.\Leftrightarrow m=2\)

a) Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{4}\ne\dfrac{-1}{-m}\)

\(\Leftrightarrow-m^2\ne-4\)

\(\Leftrightarrow m^2\ne4\)

hay \(m\notin\left\{2;-2\right\}\)

c) Để hệ phương trình vô nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}\ne\dfrac{2m}{6+m}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{m}{4}\ne\dfrac{2m}{6+m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\left(m+6\right)\ne8m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2+6m-8m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-2m\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\left(m-2\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left\{{}\begin{matrix}m\ne0\\m-2\ne0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left\{{}\begin{matrix}m\ne0\\m\ne2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=-2\)

b) Để hệ phương trình có vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{6+m}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{m}{4}=\dfrac{2m}{6+m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\left(6+m\right)=8m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\6m+m^2-8m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-2m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\left(m-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left[{}\begin{matrix}m=0\\m-2=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=2\)

20 tháng 1 2021

giúp mik đc ko, mikk cần gấp

hihi

Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)

mà \(m^2-2m+2>0\forall m\)

nên 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)