K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

a, \(\left(I\right):\left\{{}\begin{matrix}2x+ay=b\\ax-by=1\end{matrix}\right.\)

Thay (x;y)=(1;-3) vào hpt có :

\(\left\{{}\begin{matrix}2-3a=b\\a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\a+3b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b=6\\a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a=5\\a+3b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{8}\\\dfrac{5}{8}+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{8}\\b=\dfrac{1}{8}\end{matrix}\right.\)

Vậy a=5/8 , b=1/8

NV
3 tháng 3 2022

Do \(x=2\) là nghiệm của phương trình nên:

\(\left\{{}\begin{matrix}2a+y=3\\2+ay=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=3-2a\\ay=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ay=3a-2a^2\\ay=-3\end{matrix}\right.\)

\(\Rightarrow3a-2a^2=-3\)

\(\Rightarrow2a^2-3a-3=0\Rightarrow a=\dfrac{3\pm\sqrt{33}}{4}\)

9 tháng 3 2022

Thay vào ta được 

\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

 

9 tháng 3 2022

Nguyễn Huy Tú ( ✎﹏IDΣΛ... CTV, bn ơi cho mình hỏi tí:

Nếu mình làm như này có đúng không bạn:

\(\left\{{}\begin{matrix}a-1=0\\a^2-1=0\end{matrix}\right.\Leftrightarrow a-1=a^2-1\) rồi giải ra tìm được a=0 hoặc a=1 có đúng không bạn??

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp


1 tháng 12 2021

Thay \(x=3;y=-1\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}6-a=b+4\\3a-b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\6a+b=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-10\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)

1 tháng 12 2021

lỗi!

Thay x=1 và y=2 vào HPT, ta được:

\(\left\{{}\begin{matrix}a+2=3\\2+2=a^2+3\end{matrix}\right.\Leftrightarrow a=1\)

27 tháng 2 2020

thay x=3; y=1 vào hệ phương trình ta có:

\(\left\{{}\begin{matrix}2x+ay=b+4\\ax+by=8+9a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+a=b+4\\3a+b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b-a=2\\b-6a=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5a=-6\\b-a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{6}{5}\\b=\frac{4}{5}\end{matrix}\right.\)

vậy a=-6/5; b=4/5 thì hệ phương trình có nghiệm x=3;y=1

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

=>3x+2y=4 và 4x-2y=2m

=>7x=2m+4 và 2x-y=m

=>x=2/7m+4/7 và y=2x-m=4/7m+8/7-m=-3/7m+8/7

x<1; y<1

=>2/7m+4/7<1 và -3/7m+8/7<1

=>2/7m<3/7 và -3/7m<-1/7

=>m<3/2 và m>1/3