Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
b: Xét tứ giác BEFC có
BE//CF
BE=CF
Do đó: BEFC là hình bình hành
mà BE=BC
nên BEFC là hình thoi
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó: ΔEDC vuông tại E
Xét tứ giác EMFN có
\(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)
Do đó: EMFN là hình chữ nhật
c: Để EMFN là hình chữ nhật thì EM=FN
=>ED=AF
=>AEFD là hình vuông
=>\(\widehat{BAD}=90^0\)
a, Vì \(AE=CF\) và AE//CF (AB//CD) nên AECF là hbh
b, Ý bạn là O là giao điểm của AC và BD đúng k?
Vì ABCD là hbh mà O là giao điểm AC và BD nên O là trung điểm AC,BD
Ta có AECF là hbh
Mà O là trung điểm AC nên là trung điểm EF
Do đó O;E;F thẳng hàng
a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
nên ABEC là hình bình hành
b: ABEC là hình bình hành
=>AC//BE và AC=BE
AC=BE
AC=AD
Do đó: BE=AD
AC//BE
=>BE//AD
Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
c: ADBE là hình bình hành
=>AB cắt DE tại trung điểm của mỗi đường
=>N là trung điểm chung của AB và DE
=>NA=NB
d: Xét ΔBAC có BM/BC=BN/BA
nên MN//AC
MN//AC
AC\(\perp\)AB
Do đó: MN\(\perp AB\)
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Ta có: ΔADF vuông tại D
mà DP là đường trung tuyến
nên PD=PF
=>\(\widehat{AFD}=\widehat{PDF}\)
=>\(\widehat{PDF}=\widehat{QCD}\)
Xét tứ giác PQCD có PQ//CD
nên PQCD là hình thang
mà \(\widehat{PDC}=\widehat{QCD}\)
nên PQCD là hình thang cân