K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 8 2017

Lời giải:

Ta có \(y'=1+\frac{1}{x^2}\). Gọi \(a\) là hoành độ tiếp điểm. Khi đó, PT tiếp tuyến tại $a$ là:
\(y=\left (1+\frac{1}{a^2}\right)(x-a)+a-\frac{1}{a}+1\)

\(\Leftrightarrow y=\left (1+\frac{1}{a^2}\right)x+\frac{a-2}{a}\)\((d)\)

\(A=Ox\cap (d)\Rightarrow y_A=0\)

\(\left (1+\frac{1}{a^2}\right)x_A+\frac{a-2}{a}=y_A=0\Rightarrow x_A=\frac{a(2-a)}{a^2+1}\) \(\Rightarrow A(\frac{a(2-a)}{a^2+1},0)\)

\(B=Oy\cap (d)\Rightarrow x_B=0\)

\(y_B=\left (1+\frac{1}{a^2}\right)x_B+\frac{a-2}{a}=\frac{a-2}{a}\) \(\Rightarrow B(0,\frac{a-2}{a})\)

Tam giác \(OAB\) cân tại $O$ nên

\(OA=OB\Leftrightarrow \) \(\left | \frac{a(2-a)}{a^2+1} \right |=\left | \frac{a-2}{a} \right |\)

Giải PT trên ta thu được \(a=2\), nghĩa là \(A,B\equiv O\) (vô lý) nên loại

22 tháng 2 2018

Chọn A

21 tháng 4 2018

Chọn A

5 tháng 7 2017

Giao điểm với trục tung B(0 ;-1). Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hệ số góc của tiếp tuyến của đồ thị hàm số Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 tại giao điểm của đồ thị hàm số với trục tung bằng k = 2.

Chọn B

22 tháng 7 2018

Chọn D

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

25 tháng 3 2018

22 tháng 3 2019

Ta có  y ' = 3 x 2 - 4 x + 2

Do tiếp tuyến của (C) vuông góc với đường thẳng y = -x + 2016 nên hệ số góc của tiếp tuyến là k = 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn A

5 tháng 1 2019

Chọn A

20 tháng 5 2017

Chọn C

14 tháng 11 2018

Chọn A