Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.
BBT:
Từ BBT suy ra điểm cực tiêu là $x=0$
Chọn C
Quan sát đồ thị ta thấy hàm số y = f(x) đạt giá trị nhỏ nhất trên [-1;3] là -1 tại điểm x = =-1 và đạt giá trị lớn nhất trên[-1;3] là 4 tại điểm x = 3. Do đó M = 4, m = -1.
Giá trị M - m = 4 - (-1) = 5.
Chọn A
Dựa vào đồ thị ta thấy:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-2;1] lần lượt là f(0) và f(-2).
Hàm số đạt cực đại tại x = 0.
Hàm số nhận giá trị âm ∀ x ≠ 0 và bằng 0 tại x = 0.
Đáp án A
Ta có
.
Bảng xét dấu:
Suy ra hàm số có một điểm cực trị.
\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị