Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int\left(\frac{1}{x}-2x\right)dx=ln\left|x\right|-x^2+C\)
\(\int cos2xdx=\frac{1}{2}sin2x+C\)
\(\int\frac{1}{x^2-4x+4}dx=\int\frac{d\left(x-2\right)}{\left(x-2\right)^2}=-\frac{1}{\left(x-2\right)}+C=\frac{1}{2-x}+C\)
\(\int\limits^4_1\frac{1}{2\sqrt{x}}dx=\sqrt{x}|^4_1=\sqrt{4}-\sqrt{1}=1\)
\(I=\int\limits^1_0\left(2x+1\right)e^xdx\)
Đặt \(\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=\left(2x+1\right)e^x|^1_0-\int\limits^1_02e^xdx=3e-1-2e^x|^1_0=e+3\)
Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó
Câu 1:
a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)
b/ \(\int\frac{1}{x.lnx}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)
\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)
c/ \(I=\int x.sin\frac{x}{2}dx\)
Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)
\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)
d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)
Lời giải:
Đặt \(x=\sqrt{3}\tan t(t\in (0; \frac{\pi}{2}))\)
\(\Rightarrow \sqrt{9+3x^2}=\sqrt{9+9\tan ^2t}=\sqrt{\frac{9}{\cos ^2t}}=\frac{3}{\cos t}\)
Khi đó \(I=\int \frac{3d(\sqrt{3}\tan t)}{3\cos t.\tan ^2t}=\int \frac{d(\sqrt{3}\tan t)}{\cos t.\tan ^2t}\)
\(=\int \frac{\sqrt{3}dt}{\cos ^3t\tan ^2t}=\sqrt{3}\int \frac{dt}{\cos ^3.\frac{\sin ^2t}{\cos ^2t}}\)
\(=\sqrt{3}\int \frac{dt}{\cos t\sin ^2t}\)
Đặt \(\left\{\begin{matrix} u=\frac{1}{\cos t}\\ dv=\frac{dt}{\sin ^2t}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{\sin t}{\cos ^2t}dt\\ v=-\cot t\end{matrix}\right.\)
Suy ra \(I=\sqrt{3}(\frac{-\cot t}{\cos t}+\int \frac{\cot t\sin t}{\cos ^2t}dt)\)
\(=\sqrt{3}(\frac{-\cot t}{\cos t}+\int \frac{dt}{\cos t})\)
\(=\sqrt{3}(\frac{-\cot t}{\cos t}+\int \frac{d(\sin t)}{1-\sin ^2t})\)
Phân tích:
\(\int \frac{d(\sin t)}{1-\sin ^2t}=\int \frac{dk}{1-k^2}=\frac{1}{2}\int \frac{dk}{1-k}+\frac{1}{2}\int \frac{dk}{1+k}=\frac{1}{2}\ln |k+1|-\frac{1}{2}\ln |1-k|+c\)
\(=\frac{1}{2}\ln |\frac{\sin t+1}{\sin t-1}|+c\)
Vậy \(I=\sqrt{3}(\frac{\cot t}{\cos t}+\frac{1}{2}\ln |\frac{\sin t+1}{\sin t-1}|)+c\)
$I=\int \sqrt{1-(1-x)^2}$
Đặt $x-1=\sin t$ thì $dx=\cos tdt$. Suy ra
$$I=\int \sqrt{1-\sin^2 t}\cos tdt=\int \cos^2tdt=\int \frac{1+\cos(2t)}{2}dt$$
$$I=\frac{t}{2}+\frac{\sin(2t)}{4}+C$$
Thay $t=\arcsin(x-1)$ ta có nguyên hàm I.
Lời giải:
Ta có:
\(A=\int \frac{x\sin x+\cos x}{x^2-\cos ^2x}dx=\int \frac{(\cos x-x)+x(\sin x+1)}{x^2-\cos ^2x}dx\)
\(=-\int \frac{dx}{\cos x+x}+\int \frac{x(\sin x+1)}{x^2-\cos ^2x}dx=-\int \frac{dx}{x+\cos x}+\frac{1}{2}\int (\sin x+1)\left(\frac{1}{x-\cos x}+\frac{1}{x+\cos x}\right)dx\)
\(=-\int \frac{dx}{x+\cos x}+\frac{1}{2}\int (\sin x+1)\frac{dx}{x-\cos x}+\frac{1}{2}\int (\sin x-1)\frac{dx}{x+\cos x}+\int \frac{dx}{x+\cos x}\)
\(=\frac{1}{2}\int (\sin x+1)\frac{dx}{x-\cos x}+\frac{1}{2}\int (\sin x-1)\frac{dx}{x+\cos x}\)
\(=\frac{1}{2}\int \frac{d(x-\cos x)}{x-\cos x}+\frac{1}{2}\int \frac{-d(x+\cos x)}{x+\cos x}\)
\(=\frac{1}{2}\ln |x-\cos x|-\frac{1}{2}\ln |x+\cos x|+c\)
Xét biểu thức $B$
\(B=\int \frac{\ln x-1}{x^2-\ln ^2x}dx=\int \frac{(\ln x-x)+(x-1)}{x^2-\ln ^2x}dx\)
\(=-\int \frac{dx}{x+\ln x}+\int \frac{x-1}{x^2-\ln ^2x}dx=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{(x-1)}{x}\left(\frac{1}{x-\ln x}+\frac{1}{x+\ln x}\right)dx\)
\(=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx+\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{x-1}{x}dx\)
\(=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx-\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{1+x}{x}dx+\int \frac{dx}{x+\ln x}\)
\(=\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx-\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{1+x}{x}dx\)
\(=\frac{1}{2}\int \frac{d(x-\ln x)}{x-\ln x}-\frac{1}{2}\int \frac{d(x+\ln x)}{x+\ln x}\)
\(=\frac{1}{2}\ln |x-\ln x|-\frac{1}{2}\ln |x+\ln x|+c\)
Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)
a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)
Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)
\(\Rightarrow9x^2dx=-6udu\)
\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)
b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)
\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)
c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)
\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)
d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)
\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)
\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)
e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)
\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)
f/ \(I=\int cosx.sin^3xdx\)
Đặt \(u=sinx\Rightarrow du=cosxdx\)
\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)
Câu a: Tích phân không thể tính được
Câu b:
Đặt \(\sqrt{x}=t\). Khi đó:
\(\int ^{\pi ^2}_{0}x\sin \sqrt{x}dx=\int ^{\pi}_{0}t^2\sin td(t^2)\) \(=2\int ^{\pi}_{0}t^3\sin tdt\)
Tính \(\int t^3\sin tdt\) bằng nguyên hàm từng phần:
\(\Rightarrow \int t^3\sin tdt=\int t^3d(-\cos t)=-t^3\cos t+\int \cos t d(t^3)\)
\(=-t^3\cos t+3\int t^2\cos tdt\)
\(=-t^3\cos t+3\int t^2d(\sin t)=-t^3\cos t+3(t^2\sin t-\int \sin td(t^2))\)
\(=-t^3\cos t+3(t^2\sin t-2\int t\sin tdt)\)
\(=-t^3\cos t+3(t^2\sin t-2\int td(-cos t))\)
\(=-t^3\cos t+3[t^2\sin t-2(-t\cos t+\int \cos tdt)]\)
\(=-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c\)
\(\Rightarrow 2\int ^{\pi}_{0}t^3\sin tdt=2(-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c)\left|\begin{matrix} \pi\\ 0\end{matrix}\right.\)
\(=2\pi ^3-12\pi \)
Lời giải:
Đặt \(2x+1=t\Rightarrow x=\frac{t-1}{2}\)
Khi đó:
\(\int ^{\frac{1}{9}}_{0}\frac{x}{\sin ^2(2x+1)}dx=\frac{1}{2}\int ^{\frac{11}{9}}_{0}\frac{t-1}{\sin ^2t}d(\frac{t-1}{2})=\frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt\)
Xét \(\int \frac{t-1}{\sin ^2t}dt=\int \frac{t}{\sin ^2t}dt-\int \frac{dt}{\sin ^2t}=\int td(-\cot t)-(-\cot t)+c\)
\(=(-t\cot t+\int \cot tdt)+\cot t+c\)
\(=-t\cot t+\int \frac{\cos t}{\sin t}dt+\cot t+c\)
\(=-t\cot t+\int \frac{d(\sin t)}{\sin t}+\cot t+c\)
\(=-t\cot t+\ln |\sin t|+\cot t+c\)
\(\Rightarrow \frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt=\frac{1}{4}(-t\cot t+\ln |\sin t|+\cot t+c)\left|\begin{matrix} \frac{11}{9}\\ 1\end{matrix}\right.\)
\(\approx 0,007\)