K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

20 tháng 9 2019

Đáp án C

Phương pháp:

+)  đồng biến trên (a;b)

+)  nghịch biến trên (a;b)

Cách giải:

Quan sát đồ thị của hàm số y = f’(x), ta thấy:

+)  đồng biến trên (a;b) => f(a) > f(b)

+)  nghịch biến trên (b;c) => f(b)<f(c)

Như vậy, f(a)>f(b), f(c)>f(b)

Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn

23 tháng 3 2019

Đáp án A

Dựa vào đồ thị của hàm số y = f '(x), em suy ra được bảng biến thiên như sau:

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

6 tháng 3 2017

Đáp án là D

Từ đồ thị f ’(x) ta lập được BBT của f(x)

=> Có 4 nghiệm là nhiều nhất

29 tháng 7 2019

6 tháng 6 2019

Đáp án B.

Phương pháp :  Ứng dụng tích phân để tính diện tích hình phẳng.

Cách giải:

9 tháng 8 2019

Chọn đáp án D.

25 tháng 5 2018

Đáp án C

Trên khoảng ( a, b )ta có: f ' (x)< 0 nên hàm số nghịch biến trên khoảng (a, b)

Ta có f (a) > f (b) 

Tương tự trên khoảng ( b,c ) có f ' ( x ) > 0 nên hàm số đồng biến trên  ( b,c )suy ra f (c) > f (b) 

(Đến đây rõ ràng ra suy ra được 4 đúng và 1 trong 2 ý (1) và (2) có 1 ý đúng ta sẽ suy ra đáp án cần chọn là C)

Chặt chẽ hơn: Dựa vào đồ thị ta thấy

{S_2} = \int\limits_b^c {f'\left( x \right)dx} {S_1} = - \int\limits_a^b {f'\left( x \right)dx} \Rightarrow f\left( c \right) - f\left( b \right) f\left( a \right) - f\left( b \right) Do đó f (c) > f (a) > f (b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 tháng 4 2018

Đáp án C

Giả sử 

Hoành độ điểm D là nghiệm phương trình: 

 

Hoành độ điểm E là nghiệm của phương trình: 

 

Hoành độ điểm F là nghiệm của phương trình: 

 

Khi đó