Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\-a+b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=2+\sqrt{2}\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\sqrt{2}+1\\a=1-\sqrt{2}\end{matrix}\right.\)
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
a: f(5)=75/2
=>\(a\cdot5^2=\dfrac{75}{2}\)
=>\(a=\dfrac{75}{2}:25=\dfrac{3}{2}\)
Vậy: \(y=f\left(x\right)=\dfrac{3}{2}x^2\)
Khi x=-3 thì \(y=\dfrac{3}{2}\left(-3\right)^2=\dfrac{3}{2}\cdot9=\dfrac{27}{2}\)
b: y=15
=>\(\dfrac{3}{2}x^2=15\)
=>\(x^2=10\)
=>\(x=\pm\sqrt{10}\)
\(a,\Leftrightarrow a+3=4\Leftrightarrow a=1\\ \Leftrightarrow y=x+3\\ c,\text{PT hoành độ giao điểm: }x+3=2x+5\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\\ \text{Vậy tọa độ giao điểm 2 đths là }A\left(-2;1\right)\)
a: Thay x=-1 và y=5 vào y=ax+6, ta được:
6-x=5
hay x=1
b: Vì đồ thị hàm số y=ax+b đi qua hai điểm (1;1) và (0;-2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1-b=1-\left(-2\right)=1+2=3\\b=-2\end{matrix}\right.\)
Ta có \(\left\{{}\begin{matrix}f\left(x\right)=ax-2\\f\left(5\right)=8\end{matrix}\right.\) \(\Rightarrow5a-2=8\) \(\Rightarrow a=2\)
Ta có {f(x)=ax−2f(5)=8{f(x)=ax−2f(5)=8 ⇒5a−2=8⇒5a−2=8 ⇒a=2