K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

a) Khi a = 0 ta có hàm số: y=−13x3−x2+3x−4y=−13x3−x2+3x−4

- Tập xác định : (-∞, +∞)

- Sự biến thiên: y’= -x2 – 2x + 3

y’=0 ⇔ x = 1, x = -3

Trên các khoảng (-∞, -3) và (1, +∞), y’ < 0 nên hàm số nghịch biến.

Trên khoảng (-3, 1), y’ > 0

_ Cực trị:

Hàm số đạt cực đại tại x = 1, yCD=−73yCD=−73

Hàm số đạt cực tiểu tại x = -3, yCT=−13yCT=−13

_ giới hạn vô cực : limx→+∞=−∞,limx→−∞=+∞limx→+∞=−∞,limx→−∞=+∞

Bảng biến thiên:

Đồ thị hàm số:

Đồ thị cắt trục tung tại y = -4

Đồ thị cắt trục hoành tại x ≈ 5, 18

b) Hàm số y=−13x3−x2+3x−4y=−13x3−x2+3x−4 đồng biến trên khoảng (-3, 1) nên:

y < y(1) = −73−73 < 0, ∀x ∈ (-1, 1)

Do đó , diện tích cần tính là:

∫1−1(−13x3−x2+3x−4)dx=263



Xem thêm tại: http://loigiaihay.com/cau-2-trang-145-sgk-giai-tich-12-c47a26419.html#ixzz4czxQ4IGx

10 tháng 11 2017

S = ∫ 0 2 1 3 x 3 + x 2 - 3 x + 4 1 2 d x = 7

24 tháng 2 2019

Chọn A

23 tháng 5 2018

Chọn D

Ta có

Vậy a = 5; b = 6 bà b - a = 1

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

1.

\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)

\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)

\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\) 

 

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

2.

\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)

\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)

\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)

\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)

 

 

26 tháng 6 2017

Chọn D

12 tháng 2 2017

Chọn D.

Giải PT : e x = 2 ⇔ x = ln 2  Diện tích hình phẳng cần tìm là :

31 tháng 5 2017

Đáp án D

26 tháng 4 2019

Phương pháp:

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số 

y=f(x),y=g(x), trục hoành và hai đường thẳng 

x=a,x=b được tính theo công thức:

Cách giải:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số 

y=4- 1 x 2  đường thẳng y=-1 đường thẳng y=1

và trục tung được diện tích như sau:

 

Chọn: B