K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

Tam giác ABC và tam giác MNP bằng nhau (có ba cặp cạnh bằng nhau: AB = MN, BC = NP, AC = MP). Nên các cặp góc tương ứng trong hai tam giác này bằng nhau: \(\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\).

Vậy \(\widehat A = \widehat M = 65^\circ \); \(\widehat B = \widehat N = 71^\circ \); \(\widehat C = \widehat P = 180^\circ  - 65^\circ  - 71^\circ  = 44^\circ \)(vì tổng ba góc trong một tam giác bằng 180°).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Theo đề bài ta có tam giác ABC cân ở A và \(\widehat A = {56^o}\)

Mà \( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat B = \widehat C = ({180^o} - {56^o}):2 = {62^o}\)

b) Vì tam giác ABC cân tại A nên AB = AC ( định nghĩa tam giác cân )

Mà M, N là trung điểm của AB, AC

Nên AM = AN

Xét tam giác AMN có AM = AN nên AMN là tam giác cân tại A

\( \Rightarrow \widehat M = \widehat N = ({180^o} - {56^o}):2 = {62^o}\)

c) Vì \(\widehat {AMN}=\widehat {ABC}\) (cùng bằng 62°)

Mà chúng ở vị trí đồng vị nên MN⫽BC

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)

Xét tam giác MPK có:

\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)

Xét tam giác NPK có:

\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)

Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)

Suy ra \(\widehat {MKP} = \widehat {NKP}\).

b)Xét hai tam giác MPK và NPK có:

\(\widehat {MPK} = \widehat {NPK}\)

PK chung

\(\widehat {MKP} = \widehat {NKP}\)

=>\(\Delta MPK = \Delta NPK\)(g.c.g)

c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)

=> Tam giác MNP cân tại P.

5 tháng 1 2018

Câu 1 : C

Câu 2 : C

Câu 3 : A B C D M K H 1 2

a) Xét tam giác AMB và tam giác DMC , có :

AM = DM ( gt )

BM = CM ( gt )

góc AMB = góc DMC ( đối đỉnh )

=> tam giác AMB = tam giác DMC

=> DC = AB ( hai cạnh tương ứng )

Vậy DC = AB

b) Xét tam giác AKM và tam giác DHM , có :

góc AKM = góc DHM ( = 90o )

góc M1 = góc M2 ( đối đỉnh )

MA = MD ( gt )

=> tam giác AKM = tam giác DHM ( g-c-g )

=> HD = AK ( hai cạnh tương ứng )

=> góc KAM = góc HDM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên HD // AK ( dấu hiệu nhận biết hai đường thẳng song song )

Vậy HD = AK ; HD // AK ( đpcm )

a: Xét ΔCAM có CA=CM

nên ΔCAM cân tại C

=>\(\widehat{CAM}=\widehat{CMA}\)

b: \(\widehat{CAM}+\widehat{MAN}=90^0\)

=>\(\widehat{CMA}+\widehat{MAN}=90^0\)

c: \(\widehat{BAM}+\widehat{CAM}=90^0\)

\(\widehat{CMA}+\widehat{HAM}=90^0\)

DO đó: \(\widehat{BAM}=\widehat{HAM}\)

hay AM là tia phân giác của góc BAH

d: Xét ΔHAM và ΔNAM có

AH=AN

\(\widehat{HAM}=\widehat{NAM}\)

AM chung

DO đó: ΔHAM=ΔNAM

Suy ra: \(\widehat{AHM}=\widehat{ANM}=90^0\)

=>MN\(\perp\)AB

16 tháng 12 2021

Chọn A

16 tháng 12 2021

A

4 tháng 12 2019

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\) (tính chất tam giác cân).

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).

=> \(\widehat{B}+\widehat{C}=180^0-\widehat{A}\) (1).

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

=> \(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}\) (2).

Từ (1) và (2) => \(\widehat{B}=\widehat{C}=180^0-\frac{\widehat{A}}{2}.\)

b) Xét 2 \(\Delta\) vuông \(AHB\)\(AHC\) có:

\(\widehat{AHB}=\widehat{AHC}=90^0\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

Cạnh AH chung

=> \(\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông).

=> \(HB=HC\) (2 cạnh tương ứng).

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).

c) Ta có:

\(\left\{{}\begin{matrix}AM+BM=AB\\AN+CN=AC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}BM=CN\left(gt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)

=> \(AM=AN.\)

=> \(\Delta AMN\) cân tại A.

Chúc bạn học tốt!