Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1
a, \(=>A=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x.2y=4xy\)
b, \(=>B=\left[\left(x+y\right)-\left(x-y\right)\right]^2=\left[x+y-x+y\right]^2=\left[2y\right]^2=4y^2\)
c,\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)
\(=\)\(\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^3+1^3\right)\left(x^3-1^3\right)=x^6-1\)
d, \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a-b+c\right)^2-\left(b-c\right)^2\)
\(=\left(a+b-c+b-c\right)\left(a+b-c-b+c\right)\)
\(+\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)\)
\(=a\left(a+2b-2c\right)+a\left(a-2b\right)\)
\(=a\left(a+2b-2c+a-2b\right)=a\left(2a-2c\right)=2a^2-2ac\)
B2:
\(\)\(x+y=3=>\left(x+y\right)^2=9=>x^2+2xy+y^2=9\)
\(=>xy=\dfrac{9-\left(x^2+y^2\right)}{2}=\dfrac{9-\left(17\right)}{2}=-4\)
\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(17+4\right)=63\)
Bài 1:
a) Ta có: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=x^2+2xy+y^2-x^2+2xy+y^2\)
=4xy
b) Ta có: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)^2\)
\(=\left(2y\right)^2=4y^2\)
c) Ta có: \(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^6-1\)
d) Ta có: \(\left(a+b-c\right)^2+\left(a+b+c\right)^2-2\left(b-c\right)^2\)
\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a+b+c\right)^2-\left(b-c\right)^2\)
\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)+\left(a+b+c-b+c\right)\left(a+b+c+b-c\right)\)
\(=a\cdot\left(a+2b-2c\right)+\left(a+2c\right)\left(a-2b\right)\)
\(=a^2+2ab-2ac+a^2-2ab+2ac-4bc\)
\(=2a^2-4bc\)
\(\left\{{}\begin{matrix}x-y=4\\xy=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y\left(y+4\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left[{}\begin{matrix}y=-2+\sqrt{5}\\y=-2-\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)
Với \(y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\)
Với \(y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\)
\(\Rightarrow A=x^2+y^2=\left(-2+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2=\left(2-\sqrt{5}\right)^2+\left(-2-\sqrt{5}\right)^2=18\)
\(B=x^3+y^3\Rightarrow\left[{}\begin{matrix}B=\left(2+\sqrt{5}\right)^3+\left(-2+\sqrt{5}\right)^3=34\sqrt{5}\\B=\left(2-\sqrt{5}\right)^3+\left(-2-\sqrt{5}\right)^3=-34\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow C=x^4+y^4=\left(-2+\sqrt{5}\right)^4+\left(2+\sqrt{5}\right)^4=\left(2-\sqrt{5}\right)^4+\left(-2-\sqrt{5}\right)^4=322\)
\(\text{a) x^2 + y^2 = (x+y)^2 - 2xy = a^2 - 2b}\)
\(\text{b) x^3 + y^3 = (x+y)^3 - 3xy(x+y) = a^3 - 3ab}\)
\(\text{c) x^4 + y^4 = (x^2+y^2)^2 - 2x^2y^2 = (a^2-2b)^2 - 2b^2 = a^4 - 4a^2b + 2b^2}\)
\(\text{d) x^5 + y^5 = (x^3+y^3)(x^2+y^2) - x^2y^2(x+y) = a^5 - 5a^3b + 5ab^2}\)
a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)
\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)
\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)
b) \(27x^3-54x^2+36x=9\)
\(\Rightarrow27x^3-54x^2+36x-9=0\)
\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)
\(\Rightarrow\left(3x-2\right)^3-1=0\)
\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)
mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)
(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}
27\(x^3\) - 54\(x^2\) + 36\(x\) = 9
27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1
(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1
(x - 5)² = (3 + 2x)²
(x - 5)² - (3 + 2x)² = 0
[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0
(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0
(-x - 8)(3x - 2) = 0
-x - 8 = 0 hoặc 3x - 2 = 0
*) -x - 8 = 0
-x = 8
x = -8
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = -8; x = 2/3
--------------------
27x³ - 54x² + 36x = 9
27x³ - 54x² + 36x - 9 = 0
27x³ - 27x² - 27x² + 27x + 9x - 9 = 0
(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0
27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0
(x - 1)(27x² - 27x + 9) = 0
x - 1 = 0 hoặc 27x² - 27x + 9 = 0
*) x - 1 = 0
x = 1
*) 27x² - 27x + 9 = 0
Ta có:
27x² - 27x + 9
= 27(x² - x + 1/3)
= 27(x² - 2.x.1/2 + 1/4 + 1/12)
= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R
⇒ 27x² - 27x + 9 = 0 (vô lí)
Vậy x = 1
A = x² + y²
= x² - 2xy + y² + 2xy
= (x - y)² + 2xy
= 4² + 2.1
= 16 + 2
= 18
B = x³ - y³
= (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + xy + 2xy)
= (x - y)[(x - y)² + 3xy]
= 4.(4² + 3.1)
= 4.(16 + 3)
= 4.19
= 76
C = x⁴ + y⁴
= (x²)² + (y²)²
= (x²)² + 2x²y² + (y²)² - 2x²y²
= (x² + y²)² - 2x²y²
= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²
= [(x - y)² + 2x²y²]² - 2x²y²
= (4² + 2.1²)² - 2.1²
= (16 + 2)² - 2
= 18² - 2
= 324 - 2
= 322
chắc đề cho x,y chứ x+y=6,x-y=4,xy=5
(làm ra bạn tự thay số vào tính)
a,\(=>A=\left(x+y\right)^2-2xy=.....\)
b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)
c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)
d,\(=>D=\dfrac{x+y}{xy}=.....\)
e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)
Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)
Ta có: x+y+z=1
nên \(\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
mà 3>0
nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
Thay x=-y vào biểu thức \(x+y+z=1\), ta được:
\(-y+y+z=1\)
hay z=1
Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:
\(\left(-y\right)^2+y^2+1=1\)
\(\Leftrightarrow y^2+y^2=0\)
\(\Leftrightarrow2y^2=0\)
hay y=0
Vì x=-y
và y=0
nên x=0
Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:
\(P=0^{2008}+0^{2009}+1^{2010}=1\)
Vậy: P=1
nma ở trên cm y=-z mà. Nếu ở thay y=0 và z=1 vào thì nghĩa là 0 = -1 hả
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)
\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)
a) Ta có:
\(x-y=2\)
\(\Rightarrow\left(x-y\right)^2=2^2\)
\(\Rightarrow x^2-2xy+y^2=4\)
Mà: \(xy=1\)
\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)
\(\Rightarrow x^2+y^2=4+2\)
\(\Rightarrow x^2+y^2=6\)
b) Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
Mà: x + y = 1
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
a) \(\left(x+y\right)^2=\left(-7\right)^2=49\)
b) \(x^2+y^2=\left(x+y\right)^2-2xy=49-2.12=25\)
c) \(x^3+y^3=\left(x+y\right)\left(x^2+y^2\right)-xy\left(x+y\right)\)
\(=\left(-7\right).25-12\left(-7\right)=-91\)
d) \(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=25^2-2.12^2=337\)
p/s: mấy câu còn lại lm tương tự nhé