K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2015

bài này mk làm rồi, giờ giải lại à

Vì b,d>0 nênb+d>0

Ta có: a/b<c/d=>ad<bc(*)

Thêm ab vào 2 vế(*), ta được: ab+ad<ab+bc

=>a(b+d)<(a+c)b

=>a/b<a+c/b+d(1)

Thêm cd vào 2 vế (*), ta được: ad+cd<bc+cd

=>(a+c)d<(b+d)c

=>a+c/b+d<c/d(2)

Từ 1,2 => Nếu a/b<c/d thì a/b<a+c/b+d<c/d

21 tháng 6 2017

a) phải là a.d<b.c

 chứ ko phải a,d<b,c đâu

17 tháng 8 2015

mình đang hỏi bài này mà

19 tháng 8 2015

a) Ta có a / b < c / d khi ad < bc                                                                  (1)

Thêm ab vào 2 vế của (1), ta có:   ad+ab <bc+ab

                                                 a(b+d) < b(a+c) suy ra a / b<(a+c) / (b+c)    (2)

Thêm cd vào 2 vế của (1), ta có:   ad +cd<bc+cd

                                                 d(a+c) <c(b+d) suy ra (a+c) / (b+d)<c / d     (3)

Từ (2) và (3) suy ra: a / b < (a+c) / (b+d) < c / d

7 tháng 6 2016

chỉ cần thừa nhận không cần chứng minh

7 tháng 6 2016

Đặt \(\frac{c+d}{d+a}=\frac{a+b}{b+c}=k\)

\(\Rightarrow\hept{\begin{cases}c+d=\left(d+a\right)k\\a+b=\left(b+c\right)k\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}c+d=dk+ak\\a+b=bk+ck\end{cases}}\)

\(\Rightarrow a+b+c+d=bk+ck+dk+ak\)

\(\Rightarrow a+b+c+d=\left(a+b+c+d\right)k\)

\(\Rightarrow k=1\)

\(\Rightarrow\hept{\begin{cases}c+d=d+a\\a+b=b+c\end{cases}}\)

\(\Rightarrow c+d-d-a=0\)

\(\Rightarrow c-a=0\)

\(\Rightarrow c=a\)

25 tháng 10 2020

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)