K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

P= 1-1/y^2-1/x^2+1/x^2y^2

ta cs: x+y=1

cs: xy=< (x+y)^2/4=1/4

=> 1/x^2y^2>=1/16

có: ...

12 tháng 8 2019

cố tử thần bí à :> 

\(\frac{1}{4}=\frac{\left(x+y\right)^2}{4}\ge\frac{\left(2\sqrt{xy}\right)^2}{4}=xy\)

\(P=\frac{1}{x^2y^2}-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+1=\frac{1-\left(x^2+y^2\right)}{x^2y^2}+1=\frac{1-\left(x+y\right)^2}{x^2y^2}+\frac{2}{xy}+1\ge\frac{2}{\frac{1}{4}}+1=9\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

25 tháng 10 2016

ko biert lam kho qua

NV
30 tháng 5 2020

Cần điều kiện x;y dương

\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)

\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)

\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)

8 tháng 5 2017

Câu 2 thế y = 1 - x rồi quy đồng như bình thường là ra bn nhé

9 tháng 12 2018

\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)

\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)

\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)

\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)

\(\Leftrightarrow A\ne0\forall x;y\)