Cho hai hàm số f x   =   −...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Thay  x   =   − 2 vào hàm số f x   =   − 2 x 3 ta được    f − 2   =   − 2. − 2 3   =   16

Thay  x   =   − 1 vào hàm số    h ( x )   =   10   –   3 x ta được   h ( − 1 )   =   10   –   3   ( − 1 )   =   13  

Nên  f ( − 2 )   >   h ( − 1 )

Đáp án cần chọn là: D

6 tháng 10 2019

a) TXĐ:\(x\ge0\)

b)\(f\left(4-2\sqrt{3}\right)=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}\)\(=\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}}=\frac{3-2\sqrt{3}}{3}\)

\(f\left(a^2\right)=\frac{\left(-a\right)-1}{\left(-a\right)+1}=\frac{-1-a}{1-a}\)

c)\(f\left(x\right)\in Z\Rightarrow1-\frac{2}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\sqrt{x}+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{0;1\right\}TM\)

d)\(f\left(x\right)=f\left(x^2\right)\)

\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\left|x\right|-1}{\left|x\right|+1}=\frac{x-1}{x+1}\)

\(\Rightarrow\left(x+1\right)\left(\sqrt{x}-1\right)=\left(x-1\right)\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow-x+\sqrt{x}=x-\sqrt{x}\)

\(\Rightarrow x=0;1\)(TM)

+KL...

#Walker

26 tháng 3 2020

- Thay \(x=1-\sqrt{2}\) vào hàm số f(x) ta được :

\(y=\frac{\left(1-\sqrt{2}\right)^2}{\sqrt{2}-1}=\frac{\left(\sqrt{2}-1\right)^2}{\sqrt{2}-1}=\sqrt{2}-1\)

- Thay \(x=\sqrt{2}-2\) vào hàm số f(x) ta được :

\(y=\frac{\left(\sqrt{2}-2\right)^2}{\sqrt{2}-1}=\frac{6-4\sqrt{2}}{\sqrt{2}-1}\)

- Ta thấy : \(0< 2\)

=> \(3-2\sqrt{2}< 2\left(3-2\sqrt{2}\right)\)

=> \(3-2\sqrt{2}< 6-4\sqrt{2}\)

=> \(\left(\sqrt{2}-1\right)^2< 6-4\sqrt{2}\)

=> \(\sqrt{2}-1< \frac{6-4\sqrt{2}}{\sqrt{2}-1}\)

Vậy \(f_{\left(1-\sqrt{2}\right)}< f_{\left(\sqrt{2}-2\right)}\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)

8 tháng 11 2018

f(3)=3a+b

f(1)=a+b

f(2)=2a+b

do f(3)≤f(1)≤f(2) hay 3a+b≤ a+b ≤ 2a+b

=> 3a≤a≤2a

=> a=0

f(4)=4a+b=b=2 ( do a=0 )

8 tháng 11 2018

f(0) = b = 2 (dpcm)

10 tháng 1 2017

Bài 2,3 chỉ cần cho mẫu khác 0 còn căn bậc 2 thì lớn hơn 0 là xong

NV
3 tháng 3 2020

\(a=m^2-2m+3=\left(m-1\right)^2+2>0\) \(\forall m\)

\(\Rightarrow\) Hàm số đồng biến khi \(x>0\)

Vậy \(x_1>x_2>0\Rightarrow f\left(x_1\right)>f\left(x_2\right)\)

\(\sqrt{5}>\sqrt{2}>0\Rightarrow f\left(\sqrt{5}\right)>f\left(\sqrt{2}\right)\)

4 tháng 3 2020

\(m^2-2m+1+2=\left(m-1\right)^2+2>0\left(\forall m\right)\)

\(x^2\ge0\left(\forall x\right)\)

\(\Rightarrow\left(m^2-2m+3\right)x^2\ge0\)

\(\Rightarrow f\left(\sqrt{2}\right)< f\left(\sqrt{5}\right)\)

4 tháng 3 2020

Ta có : \(m^2-2m+3=m^2-2m+1+2\)

\(=\left(m-1\right)^2+2\ge2\) \(\left(Do\left(m-1\right)^2>0\right)\)

Nên khi x > 0 thì hàm số trên đồng biến.

Do \(\sqrt{2}< \sqrt{5}\Leftrightarrow f\left(\sqrt{2}\right)< f\left(\sqrt{5}\right)\)