K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
22 tháng 9 2021
Lời giải:
Vì $2>0$ nên $f(x)=2x-1$ là hàm đồng biến trên $R$
$\sqrt{3}-2-(\sqrt{5}-3)=1+\sqrt{3}-\sqrt{5}=1-\frac{2}{\sqrt{3}+\sqrt{5}}> 1-\frac{2}{1+1}=0$
$\Rightarrow \sqrt{3}-2> \sqrt{5}-3$
Vì hàm đồng biến nên $f(\sqrt{3}-2)> f(\sqrt{5}-3)$
CH
Cô Hoàng Huyền
Admin
VIP
10 tháng 11 2017
Ta thấy \(2m^2-5m+7=2\left(m^2-\frac{5}{2}m+\frac{25}{16}\right)+\frac{31}{8}=2\left(m-\frac{5}{4}\right)^2+\frac{31}{8}>0\)
Vậy nên hàm số \(y=f\left(x\right)\) là hàm số đồng biến.
Ta thấy \(1-\sqrt{2015}>1-\sqrt{2017}\Rightarrow f\left(1-\sqrt{2015}\right)>f\left(1-\sqrt{2017}\right)\)
\(m^2-2m+1+2=\left(m-1\right)^2+2>0\left(\forall m\right)\)
\(x^2\ge0\left(\forall x\right)\)
\(\Rightarrow\left(m^2-2m+3\right)x^2\ge0\)
\(\Rightarrow f\left(\sqrt{2}\right)< f\left(\sqrt{5}\right)\)
Ta có : \(m^2-2m+3=m^2-2m+1+2\)
\(=\left(m-1\right)^2+2\ge2\) \(\left(Do\left(m-1\right)^2>0\right)\)
Nên khi x > 0 thì hàm số trên đồng biến.
Do \(\sqrt{2}< \sqrt{5}\Leftrightarrow f\left(\sqrt{2}\right)< f\left(\sqrt{5}\right)\)