K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

Đáp án B

Các cách xác định mặt phẳng đúng: 2; 4 ; 8

1. Đi qua 3 điểm phân biệt không thẳng hàng

3. Trong trường hợp 2 đường thẳng chéo nhau thì không thể xác định được mặt phẳng

5. Song song với 2 đường thẳng cắt nhau  Có vô số mặt phẳng như vậy.

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

6. Song song với 2 đường thẳng chéo nhau  Có vô số mặt phẳng như vậy

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

7. Đi qua 1 điểm và song song với một đường thẳng cho trước.  Có vô số mặt phẳng như vậy

8 tháng 3 2017

Chọn C

* Số tam giác có 2 đỉnh thuộc d 1  và 1 đỉnh thuộc d 2  là: .

* Số tam giác có 1 đỉnh thuộc  d 1  và 2 đỉnh thuộc  d 2 là: .

Vậy có 70 +  105 = 175 tam giác.

14 tháng 12 2017

Tam giác cần lập thuộc hai loại

Loại 1: Tam giác có một đỉnh thuộc d1 và hai đỉnh thuộc d2. Loại này có  tam giác.

Loại 2: Tam giác có một đỉnh thuộc d2 và hai đỉnh thuộc d1. Loại này có  tam giác.

Theo bài ra ta có:

Chọn A.

7 tháng 5 2017

Tam giác cần lập thuộc hai loại

Loại 1: Tam giác có một đỉnh thuộc d 1 và hai đỉnh thuộc d 2 .

Loại này có C 10 1 . C n 2  tam giác.

Loại 2: Tam giác có một đỉnh thuộc  d 2  và hai đỉnh thuộc  d 1 .

Loại này có C 10 2 . C n 1  tam giác.

Theo bài ra ta có:  C 10 1 . C n 2 + C 10 2 . C n 1 = 2800

⇔ 10 n ( n − 1 ) 2 + 45 n = 2800 ⇔ n 2 + 8 n − 560 = 0 ⇔ n = 20

Chọn đáp án D

25 tháng 12 2020

Xét 2 trường hợp:

Th1: 1 điểm trên d1, 2 điểm trên d2

Chọn 1 điểm trên d1 có \(C_{17}^1\) (cách)

Chọn 2 điểm trên d2 có \(C^2_{20}\) (cách)

\(\Rightarrow C^1_{17}.C^2_{20}\) (tam giác)

Th2: 1 điểm trên d2, 2 điểm trên d1

Chọn 1 điểm trên d2 \(C^1_{20}\left(cach\right)\)

Chọn 2 điểm trên d1 \(C^2_{17}\left(cach\right)\)

\(\Rightarrow C^1_{20}.C^2_{17}\left(tam-giac\right)\)

\(\Rightarrow C^1_{17}.C^2_{20}+C^2_{17}.C^1_{20}=...\left(tam-giac\right)\)

28 tháng 3 2018

Đáp án là C 

Một tam giác được tạo bởi ba điểm phân biệt nên ta xét:

TH1. Chọn 1 điểm thuộc d 1 và 2 điểm thuộc  d 2 : có c 17 1 . c 20 1  tam giác.

TH2. Chọn 2 điểm thuộc  d 1  và 1 điểm thuộc d 2 :  có c 17 2 . c 20 1  tam giác.

Như vậy, ta có C 17 1 . C 20 1 + C 17 2 . C 20 1 = 5950  tam giác cần tìm.

13 tháng 1 2019

Có 2 trường hợp sau:

+ Lấy 1 điểm trên d1 và 2 điểm trên d2, suy ra cớ 10 C n 2  tam giác

+ Lấy 2 điểm trên d1 và 1 điểm trên d2, suy ra cớ n C 10 2  tam giác

Suy ra có 

30 tháng 9 2019

Đáp án B

Có 2 trường hợp sau:

+ Lấy 1 điểm trên d1 và 2 điểm trên d2, suy ra cớ 10 C n 2  tam giác

+ Lấy 2 điểm trên d1 và 1 điểm trên d2, suy ra cớ n C 10 2  tam giác

Suy ra có

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia