Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 trường hợp:
Th1: 1 điểm trên d1, 2 điểm trên d2
Chọn 1 điểm trên d1 có \(C_{17}^1\) (cách)
Chọn 2 điểm trên d2 có \(C^2_{20}\) (cách)
\(\Rightarrow C^1_{17}.C^2_{20}\) (tam giác)
Th2: 1 điểm trên d2, 2 điểm trên d1
Chọn 1 điểm trên d2 \(C^1_{20}\left(cach\right)\)
Chọn 2 điểm trên d1 \(C^2_{17}\left(cach\right)\)
\(\Rightarrow C^1_{20}.C^2_{17}\left(tam-giac\right)\)
\(\Rightarrow C^1_{17}.C^2_{20}+C^2_{17}.C^1_{20}=...\left(tam-giac\right)\)
Số tam giác lập được thuộc vào một trong hai loại sau
Loại 1: Gồm hai đỉnh thuộc vào a và một đỉnh thuộc vào b
Số cách chọn bộ hai điểm trong 10 thuộc a:
Số cách chọn một điểm trong 15 điểm thuộc b:
Loại này có: tam giác.
Loại 2: Gồm một đỉnh thuộc vào a và hai đỉnh thuộc vào b
Số cách chọn một điểm trong 10 thuộc a:
Số cách chọn bộ hai điểm trong 15 điểm thuộc b:
Loại này có:
Vậy có tất cả: tam giác thỏa yêu cầu bài toán
Chọn C.
Đáp án D
Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là : C 11 3 = 165
Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :
- Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b
- Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b
Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là : C 6 2 C 5 1 + C 6 1 C 5 2 = 135
Vậy xác suất cần tìm là 135 165 = 9 11 . => Chọn đáp án D.
Đáp án A
Số cách chọn 3 điểm bất kì là C 30 3
Để 3 điểm đó lập thành một tam giác thì 3 điểm đó không thẳng hàng
Số cách chọn 1 điểm thuộc d 1
2 điểm thuộc d 2 : C 10 1 . C 20 2
Số cách chọn 2 điểm thuộc d 1
1 điểm thuộc d 2 : C 10 2 . C 20 1
Xác suất để 3 điểm chọn được tạo thành tam giác là
Biến cố A : "ba điểm tạo thành tam giác", tức là ba điểm không thẳng hàng.
Có 2 trường hợp:
- Hai điểm thuộc a và một điểm thuộc b có C 6 2 . C 5 1 cách
- Hai điểm thuộc b và một điểm thuộc a có C 6 1 . C 5 2 cách
Suy ra,số phần tử của biến cố A là:
Ω A = C 6 2 . C 5 1 + C 6 1 . C 5 2 = 135
Đáp án A.
Các tam giác trên có hai loại:
+ Loại 1: Gồm các tam giác có 2 đỉnh điểm nằm trên a, 1 đỉnh nằm trên b. Số tam giác thuộc loại này là
+ Loại 2: Gồm các tam giác có 1 đỉnh điểm nằm trên a, 2 đỉnh nằm trên b. Số tam giác thuộc loại này là
Vậy theo quy tắc cộng, số tam giác cân tìm là: 120 + 168 = 288.
Chọn C.
Đáp án là C
Một tam giác được tạo bởi ba điểm phân biệt nên ta xét:
TH1. Chọn 1 điểm thuộc d 1 và 2 điểm thuộc d 2 : có c 17 1 . c 20 1 tam giác.
TH2. Chọn 2 điểm thuộc d 1 và 1 điểm thuộc d 2 : có c 17 2 . c 20 1 tam giác.
Như vậy, ta có C 17 1 . C 20 1 + C 17 2 . C 20 1 = 5950 tam giác cần tìm.