Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PTHĐGĐ là:
\(x^2+b=m\)
\(\Leftrightarrow x^2=m-b\)=> Chọn C
a) √(√3 - 2)² + √3
= 2 - √3 + √3
= 2
b) Để (d) và (d') cắt nhau thì:
m + 2 ≠ -2
m ≠ -2 - 2
m ≠ -4
Vậy m ≠ -4 thì (d) cắt (d')
c) Thay tọa độ điểm A(3; -1) vào (d) ta có:
(2m - 3).3 + m = -1
⇔ 6m - 9 + m = -1
⇔ 7m = -1 + 9
⇔ 7m = 8
⇔ m = 8/7 (nhận)
Thay m = 8/7 vào (d) ta có:
(d): y = -5x/7 - 8/7
Vậy hệ số góc của (d) là -5/7
Lời giải:
PT hoành độ giao điểm: $mx^2=x-2$
$\Leftrightarrow mx^2-x+2=0(*)$
Để 2 đths cắt nhau tại 2 điểm phân biệt thì pt $(*)$ phải có 2 nghiệm phân biệt
Điều này xảy ra khi \(\left\{\begin{matrix} m\neq 0\\ \Delta=1-8m>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m< \frac{1}{8}\end{matrix}\right.(I)\)
Hoành độ giao điểm khi đó là 2 nghiệm $x_1,x_2$ của pt $(*)$
Áp dụng định lý Viet: $x_1+x_2=\frac{1}{m}; x_1x_2=\frac{2}{m}$
Để 2 điểm phân biệt nằm ở 2 phía của trục tung thì $x_1,x_2$ trái dấu
Tức là $x_1x_2<0\Leftrightarrow\frac{2}{m}<0$
$\Leftrightarrow m<0$
Kết hợp với $(I)$ suy ra $m<0$
\(Bước 1\) Lập phương trình hoành độ
Hoành độ giao điểm là nghiệm của pt
\(x-2=mx^2\\ \Leftrightarrow-mx^2+x-2=0\)
\(Bước2\) Để hai hàm số cắt nhau tại hai điểm phân biệt nằm về hai phía của trục tung => pt có 2 nghiệm trái dấu
\(a\times c< 0\\ \Leftrightarrow\left(-m\right).\left(-2\right)< 0\\ \Leftrightarrow2m< 0\\ \Leftrightarrow m< 0\\ =>B\)
- xét phương trình hoành độ giao điểm : \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và B
- Có viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)
nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)
- \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)
- \(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )
a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?
b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.
Tìm m sao cho: OH2 + OK2 = 6 mọi người hướng dẫ mk ý b vs
Parabol (P) có đỉnh O nên có dạng y = a x 2 ( a ≠ 0 )
Mà (P) đi qua điểm A (2; 4) nên tọa độ A thỏa mãn phương trình parabol (P) suy ra: 4 = a. 2 2 = 4a ↔ a = 1 (thỏa mãn a ≠ 0)
Phương trình parabol (P) là y = x 2 . (d) cắt (P) tại hai điểm phân biệt thì phương trình hoành độ giao điểm phải có hai nghiệm phân biệt.
Suy ra phương trình x 2 − 2(m – 1)x + 2m + 2 = 0 có hai nghiệm phân biệt
↔ ∆ ’ = [ − ( m – 1 ) ] 2 + 2 m + 2 > 0
↔ m 2 – 2m + 1 + 2m + 2 > 0 ↔ m 2 + 3 > 0 (luôn đúng)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt
Đáp án: D
C là đáp áp đúng vì theo lý thuyết thì 2 dt \(y=ax+b\)và \(y=a'x+b'\)cắt nhau tại một điểm trên trục tung khi và chỉ khi \(b=b'\)
Đáp án là B