Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).
\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (A là trung điểm của MN).
+ AB = AC (gt).
+ \(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).
\(\Rightarrow\) Tứ giác MNCB là hình thang.
Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).
\(\Rightarrow\) Tứ giác MNCB là hình thang cân.
2:
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
=>BMNC là hình thang
mà góc B=góc C
nên BMNC là hình thang cân
b: Để BM=MN=NC thì MN=MB
=>góc MNB=góc MBN
=>góc ABN=góc CBN
=>BN là phân giác của góc ABC
=>N là chân đường phân giác kẻ từ B xuống AC
NM=NC
=>góc NMC=góc NCM
=>góc ACM=góc BCM
=>CM là phân giác của góc ACB
=>M là chân đường phân giác kẻ từ C xuống AB
3: TH1: AD//BC
Xét tứ giác ABCD có
AD//BC
AD=BC
=>ABCD là hình bình hành
=>góc C+góc D=180 độ
mà góc C=góc D
nên góc C=180/2=90 độ
=>ABCD là hình chữ nhật
=>ABCD là hình thang cân
TH2: AD ko song song với BC
Gọi O là giao của AD và BC
Xét ΔODC có góc C=góc D
nên ΔODC cân tại O
=>OD=OC
=>OA=OB
Xét ΔODC có OA/OD=OB/OC
nên AB//CD
=>ABCD là hình thang
mà góc C=góc D
nên ABCD là hình thang cân
cho mik hỏi H,I,K chỉ thuộc các cạnh đó hay là trung điểm
Gọi gđ của AI với DC và BK với DC lần lượt là E,F
xét hthang ABCD coa: M là t/đ của AD(gt) và N là t/đ của BC(gt) => MN là đg trung bình của hthang ABCD (1)
xét tg ADE có: DI vg vs AE(gt) và DI là pg của ^ADE (gt) => tg ADI cân tại D => I là t/đ của AE
c/m tương tự ta đc: K la t/đ của BF
xét hthang ABFE (AB//DC mà E;F thuộc DC) có: I là t/đ của AE(cmt) và F là t/đ của BF(cmt)
=> IK là đg trung bình của hthang ABFE (2)
Mặt khác : hthang ABCD và hthang ABFE có cùng chiều cao và AB//DC ; AB//EF mà DC và EF trùng nhau nên đg trung bình của 2 hthang ABCD và ABFE trùng nhau (3)
Từ (1),(2),(3) => M,N,I,k thẳng hàng (đpcm)